

WASSA 2023 Shared Task: Empathy, Emotion and Personality Detection in Conversations and Reactions to News Articles

Valentin Barriere, João Sedoc, Shabnam Tafreshi, Salvatore Giorgi07/14/23

Motivation

• Social skills like **emotions** are essential for human(-agent) communication

Motivation

• Social skills like **emotions** are essential for human(-agent) communication

• Empathy can help human to better communicate or to find consensus

SimSensei

MultiSense

Motivation

• Social skills like **emotions** are essential for human(-agent) communication

• Empathy can help human to better communicate or to find consensus

• **Personality** analysis can be used to improve health and well-being

Predicting Empathy, Emotion and Personality in Reaction to News Stories

WASSA 2021 – Shared task on Predicting Empathy, Emotion and Personality in Reaction to News Stories

- Subtask I: **EMP** Predicting the Empathy and Distress one essay optionally using demographic and personality as features
- Subtask II: **EMO** Predicting the Emotion of one essay optionally using demographic and personality as features

Predicting Empathy, Emotion and Personality in Reaction to News Stories

WASSA 2022 – Shared task on Predicting Empathy, Emotion and Personality in Reaction to News Stories

- Subtask I: EMP Predicting the Empathy and Distress one essay optionally using demographic and personality as features
- Subtask II: EMO Predicting the Emotion of one essay optionally using demographic and personality as features
- Subtask III: **PER** Predicting the Big Five of one writer using its essays and optionally using demographic, and the articles as features
- Subtask IV: IRI Predicting the Interpersonal Reactivity Index of one writer using its essays and optionally using demographic, and the articles as features

Predicting Empathy, Emotion and Personality in Reaction to News Stories

WASSA 2023 – Shared task on Predicting Empathy, Emotion and Personality in Reaction to News Stories

- Subtask I: EMP Predicting the Empathy and Distress one essay optionally using demographic and personality as features
- Subtask II: EMO Predicting the Emotion of one essay optionally using demographic and personality as features
- Subtask III: **PER** Predicting the Big Five of one writer using its essays and optionally using demographic, and the articles as features
- Subtask IV: IRI Predicting the Interpersonal Reactivity Index of one writer using its essays and optionally using demographic, and the articles as features
- Subtask V: CONV Predicting speech-turn-level Empathy, Emotion polarity, and Emotion intensity in conversations

Annotation and collections of the data and labels

and provided emotion tags per essay

3

Annotation and collections of the data and labels

Figure 1: Big Five.

Figure 1: Big Five.

Figure 2: IRI .

Figure 3: Co-occurrence matrix of the EMO labels on the train and dev sets

For the CONV task, the prediction is at the speech-turn level. For the EMP and EMO tasks, the prediction is at the essay-level while for the PER and IRI task the prediction is at the writer-level.

5 shared tasks on Codalab

Evaluation

- CONV: Pearson Correlation (average mean over empathy-level and emotion polarity and emotion intensity)
- EMP: Pearson Correlation (average mean over empathy and distress)
- EMO: f1-score, precision, recall, and accuracy (macro and overall the 6 emotions + neutral)
- PER: Pearson Correlation (average mean over openness to experience, conscientiousness, extraversion, agreeableness and neuroticism)
- IRI: Pearson Correlation (average mean over perspective taking, fantasy, empathic concern and personal distress)

Codalab competition:

https://codalab.lisn.upsaclay.fr/competitions/11167

Overall submissions

- 79 participants registered
 - 7 teams participated to CONV
 - 8 teams participated to EMP
 - 10 teams participated to EMO
 - 5 teams participated to PER
 - 6 teams participated to IRI
- Models: PTLM (BERT, RoBERTa, BigBird, DeBERTA, ELECTRA, AIBERT, DistilBERT, ...), LLM (GPT-3, chatGPT, GPT4), LSTM, Interaction-aware model
- Ressources: GoEmotions, EPITOME, Sentiment and Emotion datasets of tweets or conversations
- Others:
 - Data-Augmentation: Paraphrasing or Generating underrepresented classes, Back-translation
 - Demographic meta-data integrated as embeddings or using prompt-based methods as sentence or as a table
 - Ensemble methods (models or adapters)
 - In-Context-Learning, fine-tuning, adapting

Empathy and Emotion in Conversations results – Evaluation Phase

Team	Emo Pol	Emo Int	Emp	Avg
HIT-SCIR	0.852	0.714	0.708	0.758
YNU-HPCC	0.824	0.693	0.674	0.730
Hawk	0.809	0.701	0.665	0.725
NCUEE-NLP	0.803	0.698	0.669	0.724
warrior1127	0.770	0.701	0.660	0.710
CAISA	0.783	0.686	0.652	0.707
Curtin OCAI	0.750	0.683	0.573	0.669
sushantkarki	0.778	-0.030	-0.023	0.242
Cordyceps	-0.005	0.039	0.018	0.017
Baseline	0.781	0.692	0.660	0.711

 Table 2: Results of the teams participating in the CONV track (Pearson correlations).

Empathy and Distress results – Evaluation Phase

Team	Emp	Dis	Avg
NCUEE-NLP	0.415	0.421	0.418
CAISA	0.348	0.420	0.384
PICT-CLRL	0.358	0.334	0.346
zex	0.293	0.391	0.342
HIT-SCIR	0.329	0.354	0.342
YNU-HPCC	0.331	0.245	0.288
Curtin OCAI	0.187	0.344	0.266
Hawk	0.270	0.207	0.238
Cordyceps	-0.020	0.096	0.038
Baseline	0.536	0.575	0.555

Table 3: Results of the teams participating in the **EMP** track (Pearson correlations).

The baseline was trained also using the 2022 data.

Emotions results – Evaluation Phase

Team	Р	R	F1	Jac
Adityapatkar	0.810	0.677	0.701	0.600
Bias Busters	0.630	0.731	0.647	0.538
HIT-SCIR	0.721	0.631	0.644	0.562
zex	0.699	0.637	0.643	0.562
lazyboy.blk	0.776	0.601	0.613	0.554
Converge	0.596	0.560	0.565	0.539
amsqr	0.752	0.479	0.533	0.507
surajtc	0.463	0.668	0.522	0.451
YNU-HPCC	0.575	0.502	0.514	0.542
VISU	0.257	0.301	0.272	0.421
Cordyceps	0.191	0.236	0.202	0.241
Sidshank	0.295	0.211	0.150	0.287
mimmu3302	0.092	0.200	0.126	0.271
$Baseline_{FT}$	0.631	0.645	0.632	0.551
$Baseline_EXT$	0.860	0.539	0.602	0.522

Table 4: Results of the teams participating in the **EMO** track (macro-averaged precision (P), recall (R), F1-score (F1) and micro-Jaccard (Jac)).

11

Personality and IRI results

Team	Consc.	Open.	Extr.	Agree.	Stab.	PER
YNU-HPCC	0.289	0.372	-0.130	0.410	0.317	0.252
CAISA	0.323	0.327	-0.197	0.290	0.256	0.200
Curtin OCAI	0.186	0.152	0.014	-0.038	0.183	0.099
Cordyceps	-0.059	-0.187	0.160	0.101	-0.010	0.001
Hawk	-0.082	0.066	-0.109	-0.119	-0.114	-0.072
Baselines	-0.131	-0.037	-0.134	0.195	0.081	-0.005

Table 5: Results of the PER tracks (Pearson correlations).

Team	Persp.	Distr.	Fant.	Emp.	IRI
YNU-HPCC	0.102	0.256	0.033	0.226	0.154
Xuhao	0.132	0.366	0.036	0.076	0.153
CAISA	0.158	-0.188	-0.056	0.180	0.024
Curtin OCAI	-0.092	0.193	-0.014	-0.114	-0.007
Cordyceps	0.004	0.191	-0.018	0.089	0.067
Hawk	-0.013	-0.020	0.138	-0.153	-0.012
Baselines	0.107	-0.046	0.063	0.340	0.116

Table 6: Results of the IRI tracks (Pearson correlations).

Best approaches

CONV: HIT-SCIR

- Ensemble of DeBERTA(-xl and -xxl) models
- Context window to integrate the interactions

EMP: NCUEE-NLP

- Ensemble of RoBERTA(-base) models
- PT on Sentiment in tweets and Emotion in Conversations

EMO: Adityapatkar

- Ensemble of BERT and RoBERTA(-base) models
- Learned a probability threshold

PER/IRI: YNU-HPCC

- DeBERTA(-xxl) with an adapter
- Data-augmentation using back-translation

- Demographic were used this year to split the dataset in order to test models robustness
- Data-augmentation still common
- Ensemble methods are always helping a lot
- GPT-4 was beaten
- But bigger fine-tunable models lead
- Nobody tried to model the all 5 tasks at the same time !

We want to thank all the participants of this shared-task!

Questions?

References i