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A B S T R A C T

Accurate early-season crop type classification is crucial for the crop production estimation and monitoring
of agricultural parcels. However, the complexity of the plant growth patterns and their spatio-temporal
variability present significant challenges. While current deep learning-based methods show promise in crop
type classification from single- and multi-modal time series, most existing methods rely on a single modality,
such as satellite optical remote sensing data or crop rotation patterns. We propose a novel approach to fuse
multimodal information into a model for improved accuracy and robustness across multiple crop seasons
and countries. The approach relies on three modalities used: remote sensing time series from Sentinel-2 and
Landsat 8 observations, parcel crop rotation and local crop distribution. To evaluate our approach, we release
a new annotated dataset of 7.4 million agricultural parcels in France (FR) and the Netherlands (NL). We
associate each parcel with time-series of surface reflectance (Red and NIR) and biophysical variables (LAI,
FAPAR). Additionally, we propose a new approach to automatically aggregate crop types into a hierarchical
class structure for meaningful model evaluation and a novel data-augmentation technique for early-season
classification. Performance of the multimodal approach was assessed at different aggregation levels in the
semantic domain, yielding to various ranges of the number of classes spanning from 151 to 8 crop types or
groups. It resulted in accuracy ranging from 91% to 95% for the NL dataset and from 85% to 89% for the
FR dataset. Pre-training on a dataset improves transferability between countries, allowing for cross- domain
and label prediction, and robustness of the performances in a few-shot setting from FR to NL, i.e., when the
domain changes as per with significantly new labels. Our proposed approach outperforms comparable methods
by enabling deep learning methods to use the often overlooked spatio-temporal context of parcels, resulting
in increased precision and generalization capacity.
1. Introduction

Crop-type maps are an essential element used in crop production
monitoring that feed into global food security assessments (Porter et al.,
2014). Satellite Earth Observation (EO) systems offer a valuable data
source for crop classification due to the synoptic, repeated, consistent,
and timely availability of observations (Weiss et al., 2020). Since 2015,
the data from the European Union (EU)’s Copernicus program, in par-
ticular those of the Sentinel-1 (S1) and S2 sensors, provide systematic
and consistent EO data at a spatial resolution higher than the size of

∗ Corresponding author at: Departamento de Ciencias de Computacion, Universidad de Chile, Santiago, Chile.
E-mail address: vbarriere@dcc.uchile.cl (V. Barriere).

1 Shared first authorship.

most agricultural parcels. Meanwhile, and in agreement with the EU’s
Common Agricultural Policy (CAP), member states are committed to
manage geospatial farmer declaration referred as GSA datasets to serve
as support tools for paying agencies in charge of administrating the
payments of farmers’ subsidies of the CAP. GSA are datasets, delivered
annually, and consist of geographic polygons representing agricultural
parcels; each polygon is annotated with the cultivated crop type. When
made publicly available (Schneider et al., 2023), these datasets can
be used as a valuable source of extensive Ground Truth (GT) data for
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ANN Artificial Neural Network
BDAP Big Data Analytics Platform
biLSTM bidirectional LSTM
BoC Bag-of-Crops
BRDF Bidirectional Reflection Distribution Func-

tion
BV Biophysical variables
CAP Common Agricultural Policy
CD Crop Distribution
CDL Cropland Data Layer
CNN Convolutional Neural Networks
CNN-LSTM Convolutional Neural Network-Long-Short-

Term-Memory
CR Crop Rotation
EO Earth Observation
EU European Union
FAPAR Fraction of Absorbed Photosynthetically

Active Radiation
FOI Feature Of Interest
FR France
GSA Geospatial Aid Application
HLS Harmonized Landsat Sentinel-2
InterYE Inter-Year Encoder
IntraYE Intra-Year Encoder
L8 Landsat 8
LAI Leaf Area Index
LSTM Long-Short-Term-Memory
m-F1 micro-F1 score
NIR Near Infrared bands
NL Netherlands
PSE-LTAE Pixel-Set Encoder with a Lightweight Tem-

poral Attention Encoder
QA Quality Assessment
RNN Recurrent Neural Network
RS Remote Sensing
S1 Sentinel-1
S2 Sentinel-2

mapping crop types. Capitalizing on the abundance of data, Satellite
Image Time Series (SITS) datasets have evolved significantly over the
past decade (Selea, 2023), paving the way for the adoption of data-
intensive methodologies. Unlike the earlier practice of relying on GT
from in situ data collections (thus limited in size), the availability of
extensive datasets has facilitated the development of deep learning
models.

This study introduce a novel multi-modal modeling approach that
integrates EO data with historical cropping practices through the use
of Crop Rotation (CR). This innovative scheme has the capability to
predict crop types in the absence of GT data for the test year. While
previous attempts have been made, none have endeavored to integrate
these diverse modalities in a learning model. Existing methodologies
primarily concentrate on assessing intra-year dynamics, often relying
solely on EO data from the specific season of interest, neglecting the
essential inter-year dynamics that play a crucial role in reflecting agri-
cultural practices. By fusing the different data sources in a hierarchical
way, the approach described in this paper allows one to take advantage
of both the inter-year and the intra-year dynamics. To this purpose, we
release an aligned multiyear SITS dataset S2-based at parcel level on
the basis of the Dutch and the French GSA.
2

1.1. Related works

In this section, we will explore previous contributions from studies
focused on crop type mapping using deep learning. Such methods have
demonstrated superior results compared to classical machine learning
and signal processing-based approaches, particularly on a large scale.

1.1.1. EO-based models
Over the past five years, several research teams have focused on

developing EO-based crop type classifiers relying on deep learning.
Taking California as study area, Zhong et al. (2019) investigated the vi-
ability of employing 1D Convolutional Artificial Neural Network (ANN)
(Conv1D) and LSTM for crop type mapping. They showcased the su-
periority of the Conv1D algorithm compared to conventional machine
learning algorithms (e.g., XGBoost, Random Forest, and Support Vector
Machine). Although the LSTM did not perform as well as anticipated, it
is possible that the utilization of relatively low-density time series data
from Landsat may have had an impact. In Europe, Pelletier et al. (2019)
was among the pioneers in developing EO-based crop type classifiers
relying on deep learning. They introduced the 1D-Convolutional Neural
Networks (CNN) TempCNN algorithm using the Formosat −2 data,
which offers high spatial and temporal resolution time series (similar to
S2) but with a simplified spectral resolution. When comparing the Tem-
pCNN algorithm, they demonstrated a slight improvement compared to
random forest. Taking advantage of the extensive collection of Coper-
nicus Sentinel data and GSA datasets, numerous studies have emerged,
employing data-intensive learning methods to achieve advanced crop
type classification. In the study by Rußwurm et al. (2019a), a parcel-
level classification was conducted targeting 13 crop types in French
Brittany using the full spectral information of S2. They assessed the
performances of two models: a Transformer-Encoder (Vaswani et al.,
2017), and a Recurrent Neural Network (RNN) based on LSTM archi-
tecture (Hochreiter and Schmidhuber, 1997). Their findings indicated
that both the Transformer-Encoder and LSTM models exhibited similar
classification performance.

Later on, Rußwurm and Körner (2020) designed a crop classifier
at the parcel-level using S2 data from three regions of Germany and
compare different approaches to model the signal, including among
others a Transformer and an LSTM. They conclude that EO data pro-
cessing (atmospheric correction, cloud filtering) provided small but
consistent benefits for these types of models. A similar approach was
taken by Rußwurm et al. (2019b) on 40k parcels in Central Europe,
for which they proposed a new early classification mechanism to en-
hance a classical model with an additional stopping probability based
on previously seen information. Furthermore, Rußwurm and Körner
(2018) tackled the task of crop classification at the pixel level, by
accounting for the spatial variation to detect parcels boundaries, using
Convolutional Neural Network-Long-Short-Term-Memory (CNN-LSTM)
to classify 17 types of crops in a unique German region. (Sainte Fare
Garnot et al., 2019) proposed to use a CNN before a RNN to learn the
aggregation of the parcel pixels instead of classically averaging them,
and applied their system on 200k parcels of the south-west of France.
Finally, Sainte Fare Garnot et al. (2020) proposed a innovative method
to tackle parcel-level crop classification, by randomly sampling pixels
of the parcels to learn expressive descriptors that are processed by a
transformer.

1.1.2. Transferability and domain adaptation containing unseen labels
While most crop type classification studies have relied on current-

year GT data, the exploration of models that exhibit spatio-temporal
transferability is essential for certain applications. This can be seen as
learning from a source data distribution and testing on a target data
coming from a different domains, hence called domain adaptation.

Transferability can be extended not only across time but also across
space. In this scenario, a model is trained using a dataset from one
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location (e.g., country A) and assessed on a separate dataset from a dif-
ferent location (e.g., country B). The task is complex as dataset varies;
for instance, new labels can occur in the test set and not in the train
set.2 The model can be therefore fined tuned with few examples from
a new dataset, which is named ‘‘few-shot’’ model. We use ‘‘zero-shot’’
model naming when no examples are used for fine tuning (Peng et al.,
2018). Only some works attempt few-shot classification with EO-data
knowing that a majority of the systems work poorly without domain
data. Nevertheless, Rußwurm et al. (2019c) and Tseng et al. (2021a)
have both proposed to use Model-Agnostic Meta-Learning (MAML) in
order to tackle few-shot crop or land cover classification at the pixel-
level, where ‘‘the generalization is induced by a few labeled examples in
the target domain’’, using EO data only.

(Jia et al., 2019) proposed a method to map data in the target do-
ain to a distribution similar to that of the source domain using a cyclic
AN to generate artificial target domain data. They evaluated their ap-
roach on cropland mapping and burned area detection, utilizing only
wo classes from the Cropland Data Layer (CDL) dataset for cropland
apping, without incorporating unseen labels. Wang et al. (2021), in
four-class classification scenario also without unseen labels, aimed

o minimize the Mean Minimum Discrepancy between several hidden
tates of the network across different domains, forcing adaptation.
Nyborg et al., 2022b) introduced a clever method to align different
omains by learning a temporal shift that models the temporal varia-
ions in phenology time series for distinct regions. They focused on 15
lasses, leaving others unknown, and evaluated their approach on the
arget domain using classes from the source domain, thereby mitigating
he issue of unseen labels. Finally, Lucas et al. (2023) propose a model
or few-shot domain adaptation, without a significant part of new labels
n the test set (maximum 0.57% of unknown test labels). Thus, these
dvancements in the realm of Earth Observation data demonstrate
he evolving potential of few-shot and zero-shot learning models in
vercoming domain-specific challenges and enhancing the adaptability
f models to new, unlabeled datasets.

.1.3. Early-season classification
Although end-of-season crop type maps are essential for agricultural

and monitoring (Weiss et al., 2020), there are applications, such as
arly-season crop production monitoring, that demand a more rapid
esponse, necessitating the release of crop type map before the harvest
named as early-season classification).

The early-season classification necessitates navigating a trade-off
etween the timeliness and the accuracy of the forecast. Rußwurm
t al. (2019b) proposed to solve the problem in an elegant way, with
n adapted cost function that only rewards the classifier for an early
lassification if the right class has been predicted with a respectable
egree of accuracy. They extend this work in Rußwurm et al. (2023)
y presenting end-to-end Learned early-season classification of Time
eries, also classifying crops at the parcel-level in France, Germany,
hana and South Sudan. Finally, Lin et al. (2022) proposed an original

opology-based approach to automatically label instances of the test
eason in early-season.

Without using a special cost function, Weilandt et al. (2023) use
Pixel-Set Encoder with a Lightweight Temporal Attention Encoder

PSE-LTAE) with a data-augmentation technique initially proposed
y Barriere and Claverie (2022) on hierarchical LSTM for crop-type
lassification at the parcel-level. They perform data-augmentation by
andomly cropping the end of the EO time series during training. The
ata-augmentation technique boosts the performances of early-season
lassification. They also compared separate models trained on data
ropped up to a unique certain period in the year (i.e. one model for
ne period), which is not efficient in terms of computation and yielded
imilar results.

2 contrary to few-shot domain adaptation, because of new labels in the test
et.
3

1.1.4. Crop-rotation-based models
Crop rotation is an common agronomic practice that provides valu-

able information for predicting the crop type in following-season. The
exploration of Crop Rotation (CR) has been made easier by the avail-
ability of year-dependent GSA datasets. A good understanding and
design of crop rotation is also vital for sustainability and mitigating the
variability of agricultural productivity induced by climate change (Bo-
han et al., 2021). Therefore, the importance of CR modeling is evident,
as it has the potential to enhance mapping performance, particularly
for early-season estimates.

Crop rotation patterns are complex and non-stable in time, often
dependent on farmer management decisions and subject to changes due
to economic considerations and administrative regulations (Dogliotti
et al., 2003). As a result, expert knowledge-based models have limi-
tations in terms of accuracy and applicability over large areas and long
periods. Alternative approaches, such as estimation of crop sequence
probabilities using survey data and hidden Markov models have been
demonstrated in France (Xiao et al., 2014), but these methods are not
always feasible at large scale due to the extended size of the required
sample.

Past research has focused on using machine learning techniques to
predict crop rotations. In Osman et al. (2015), a Markov Logic model
is used to predict the following season’s crop in France, achieving an
accuracy of 60%. Other studies have utilized deep neural networks,
such as (Yaramasu et al., 2020), which reaches a maximum accuracy
of 88% on a 6-class portion of the US CDL dataset over 12 years.

Only three studies (Johnson and Mueller, 2021; Giordano et al.,
2020; Quinton and Landrieu, 2021) have been identified that com-
bine the use of crop rotations and satellite time-series data with deep
learning. Johnson and Mueller (2021) applied this method over sev-
eral seasons to derive near real-time CDL. However, this methodology
is constrained to a small number of crop types and the use of a
Random Forest classifier, while recent advancements in deep learn-
ing have shown significant improvements in such high-data regime
problems. Giordano et al. (2020) used Conditional Random Fields to
model the temporal dynamics of crop rotations. They focused on two
French regions with very different climate conditions and agricultural
practices, using around 9,230 and 1,902 parcels with 2 seasons of data.
(Quinton and Landrieu, 2021) propose to use a PSE-LTAE (Sainte Fare
Garnot et al., 2020) combined with a multi-year classification method.
They represent the past crops with a one-hot encoder that they sum,
without modeling the dynamics of the sequence. In our work, we not
only focus on modeling the sequential aspects of crop rotations, but also
incorporate the Remote Sensing (RS) signals from previous seasons.

1.1.5. Class hierarchy
As far as the authors know, the only works using Deep Learning

that focus on leveraging the hierarchy between the classes in order
to produce significant metrics are the ones of Sainte Fare Garnot and
Landrieu (2021) and Turkoglu et al. (2021). The first one propose to use
the Average Hierarchical Cost (AHC), which depends on the distance
between the different classes in the hierarchical ontology. Nevertheless,
they are not taking into account the distribution of the actual test set, in
order to create a set of sub-classes that are pertinent for the validation
of the model’s performances (i.e. equivalent of setting the distance
between some classes to zero when their group is not significant).
The second one, in the same way as (Sanh et al., 2018), proposes to
integrate the hierarchical structure of the labels by integrating several
loss functions at different depth regarding the complexity of the task.

1.2. Positioning and objectives

To the best of the authors’ knowledge, there are some gaps in
the existing literature. A significant amount of research has focused
on using RS to predict crop types at the pixel or parcel level using
only EO and in-situ observations of the current season, treating the
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signal as independent from one season to another. Other studies have
used parcel crop rotations to address preseason prediction of crop
types (Osman et al., 2015; Yaramasu et al., 2020), but the lack of
sufficient information in the signal (i.e. short duration of the time
series) limits their performance even when targeting minor classes.
Although the integration of EO data with CR has been investigated in
certain studies (Giordano et al., 2020; Quinton and Landrieu, 2021),
no one has yet taken this analysis one step further by incorporating its
dynamic modeling. The contributions of this study are 5-fold:

(i) We release a new aligned SITS dataset of more than 7.4 mil-
lion parcels with their associated crops, and S2 signals for the
period 2016–2020 in France (FR) and NL. This allows for the
integration of CR patterns with the EO signal.

(ii) We create a data- and knowledge-driven technique to auto-
matically group crops together in a meaningful way according
to their similarity and importance in the region, for a fairest
comparison of classifiers in any crop datasets. It leverages ex-
pert knowledge from the EuroCrops (Schneider et al., 2023)
taxonomy.

(iii) We construct a novel approach for crop type mapping from CR
and S2 optical time series in a multimodal way using a hierarchi-
cal LSTM network. This approach is unique in its conception, as
it fuses large amounts of temporally fine-grained EO data with
crop rotation analysis in an advanced deep learning method.
The crop rotations and the S2 time series are enhanced by
previous-season crop distributions of the neighboring parcels.3

(iv) We develop a data-augmentation technique for the early-season
classification, by randomly cropping the end of the RS time-
series data. This allows our model to classify parcels before the
end of the season, a crucial feature for real-life application of
crop monitoring.

(v) We assess the cross-domain generalization potential of the frame-
work based on a modified nomenclature of EuroCrops, without
using any strategy to mitigate domain gaps, target shifts, or
handle new classes.

2. Materials

This section presents a description of the study area and the EO data
processing procedure.

2.1. Crop reference data, study area, and harmonization of parcel data

The GSA corresponds to the annual crop declarations made by EU
farmers for CAP area-aid support measures. The electronic GSA records
include a spatial delineation of the parcels. A GSA element is always a
polygon of an agricultural parcel with one crop (or a single crop group
with the same payment eligibility). The GSA is operated at the region
or country level in the EU 27 member states, resulting in about 60
different designs and implementation schemes over the EU. Since these
infrastructures are set up in each region, data are not interoperable
at the moment, and the legends are not semantically harmonized.
Furthermore, only few EU member states release GSA data as open data,
although the overall trend is towards increasingly opening up the data
for public use.

Some efforts have been made to provide harmonized GSA dataset
over the EU. AI4boundaries (d’Andrimont et al., 2023) provides har-
monized parcel geometries over 7 countries in the EU to benchmark
method for parcel delineation. EuroCrops (Schneider et al., 2021) pro-
posed a semantic harmonization framework to harmonize the legend of
GSA across different countries. This harmonization is open source and

3 Our method is completely feature-independent and could be used with
ther bands.
4

is maintained by the community.4 While EuroCrops provides a unique
effort so far, this work is still in progress especially regarding the time
dimension. A recent European Commission Implementing Regulation
(EU) 2023/1385 identifies a list of specific high-value datasets and the
arrangements for their publication. This should be a game changer in
the opening of the GSA for public access in the future and thus foster
their use for research.

The Hierarchical Crop and Agriculture Taxonomy version 2
(HCATv2) from EuroCrops offers a knowledge graph regrouping crops
together in a hierarchical way that is coherent with agricultural
practices. It contains 393 classes, which are defined at six hierarchical
levels of which the first two are fixed due to compatibility with other
taxonomies. For example 33-01-01-05-01 corresponds to the class
Summer Oats, which is included in its parent class 33-01-01-05-
00 (Oats) and its grand-parent class 33-01-01-00-00 (Cereals).

evertheless, it is not possible to compare the labels only using the
ierarchy because some branches go to a deeper level than others.
or example, the class Capsicum is level-4 and represent 0.004% of
R, which is the same level than the class Cereal representing 32%.

HCATv2 (Schneider et al., 2021) was used to represent a Sankey
diagram linking the French GSA (left) and the Dutch GSA (right),
using HCATv2 (centre) is represented in Fig. A.1 using 40 main crop
types for each country.6

For this study, FR and the NL were selected because of (i)
their open parcel data availability, (ii) their EU representativeness
in covering a latitude range from 40◦ to 55◦ Northern latitude as
well as four biogeographic regions (i.e. Oceanic, Continental, Alpine
and Mediterranean) and (iii) the countries have different size and
landscape. Parcel GSA data from seasons7 2015 to 2020 over FR and
from 2013 to 2020 over the NL were collected 1.

2.2. Geometric minimum common parcel extraction through time

From season-to-season, the parcel boundaries, as delivered by the
yearly GSA dataset, may change. We intersected GSA data (i.e. 2013–
2020 for NL and 2015–2020 for FR) in order to extract minimum
common area, each with a distinct multi-annual crop sequence, named
hereafter Feature Of Interest (FOI). Since FOI are the cross-section of
varying parcel bounds, their overall size is smaller than the annual GSA
parcels. We discarded any FOI with an area of less than 0.1 ha and 0.5
ha for NL and FR, respectively. The total FOI area cover 85% and 93%
of the average GSA area for NL and FR respectively (the ‘‘stack’’ entries
in Table 1). For each FOI, a crop type sequence was extracted, as well
as the remote sensing time series 1 (see Fig. 1).

2.3. Earth observation processing

Remote sensing data were extracted from S2 MSI and L8 OLI
sensors. While the GSA data spans from 2013 and 2015, for NL (It
starts from 2009 but we only took data from 2013) and FR respectively,
the remote sensing data were used starting 2016 cropping season
(i.e., from October-2015), corresponding to the first cropping season
with Sentinel-2 A in-orbit.

S2 MSI products with Level-2 A surface reflectance data were
downloaded from the Copernicus Open Access Hub. L8 OLI surface
reflectance data were downloaded from the L30 products of the
Harmonized Landsat Sentinel-2 (HLS) data set. For both products,
L2 A and L30 Quality Assessment (QA) layers were used to mask

4 https://github.com/maja601/EuroCrops
5 https://eur-lex.europa.eu/eli/reg_impl/2023/138
6 An interactive version of the diagram without class limita-

ion is available on https://jeodpp.jrc.ec.europa.eu/ftp/jrc-opendata/DRLL/
ropDeepTrans/data/sankey_All_crops.html.

7
 season n means from October n to October n+1.

https://github.com/maja601/EuroCrops
https://eur-lex.europa.eu/eli/reg_impl/2023/138
https://jeodpp.jrc.ec.europa.eu/ftp/jrc-opendata/DRLL/CropDeepTrans/data/sankey_All_crops.html
https://jeodpp.jrc.ec.europa.eu/ftp/jrc-opendata/DRLL/CropDeepTrans/data/sankey_All_crops.html
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Table 1
Original Geospatial Aid Application (GSA) parcel numbers and area per season used in the study for France (FR) and
Netherlands (NL). The number of distinct crop types are provided using original GSA (4th column) and harmonized using
EuroCrops (5th column). The ‘‘stack’’ lines correspond to the Feature Of Interest (FOI, see Section 2.2).

Country Season RS # distinct crop types Number of Total area

original harmonized polygons (1000 ha)

NL 2013 ✗ 76 41 762,725 1855
NL 2014 ✗ 75 41 765,006 1859
NL 2015 ✗ 260 117 790,930 1873
NL 2016 ✓ 296 133 786,572 1871
NL 2017 ✓ 300 136 785,710 1882
NL 2018 ✓ 312 135 774,822 1871
NL 2019 ✓ 317 139 772,565 1868
NL 2020 ✓ 326 141 767,034 1872

NL stack 401 148 596,762 1407

FR 2015 ✗ 261 150 9,434,672 27,856
FR 2016 ✓ 261 147 9,334,043 27,876
FR 2017 ✓ 280 148 9,393,747 27,889
FR 2018 ✓ 282 149 9,517,878 27,917
FR 2019 ✓ 241 149 9,604,463 27,960
FR 2020 ✓ 239 148 9,778,397 27,998

FR stack 319 151 7,051,683 25,495
Fig. 1. Feature Of Interest (FOI) extraction, time series extraction and smoothing. (a) the map shows an overlap of the six GSA layers; (b) Resulting blocks corresponding to the
intersection of the six GSA layers, reduced by an inner buffer; (c) rasterized version of the blocks used for extracting the S2 data; (d) full S2 and crop types time series of two
selected FOI (shown in panels (a–c). Yearly crop types are displayed on the top sub-panel. Input variables time series are displayed using daily observations (circles and squares
correspond to S2 and L8 data, respectively) and smoothed signal (used as LSTM inputs).
non-surface-related information. We masked all pixels flagged as cloud,
cloud-shadow, cirrus and snow.

Leaf Area Index (LAI) and Fraction of Absorbed Photosynthetically
Active Radiation (FAPAR) Biophysical variables (BV) maps were
derived from the S2 L2 A (20 m spatial resolution) and L8 L30
(30 m spatial resolution) products, using the BV-NET algorithm
developed by Weiss and Baret (1999). It aims to retrieve the two
BV from multispectral reflectance using the inversion of the radiative
transfer model PROSAIL and a back-propagation ANN. Following the
configuration of Delloye et al. (2018), the architecture of the ANN
consists of two layers: (i) one layer with five tangent sigmoid transfer
functions neurons and (ii) one layer with one linear transfer functions
neuron. This configuration allows for greater dynamics in the output
variables (Claverie et al., 2013). The HLS products are normalized
5

using the Bidirectional Reflection Distribution Function (BRDF) with
a nadir view zenith angle and a variable sun angle (Claverie et al.,
2018), while the S2 L2 A products are unadjusted with BRDF. We
retained these data specifications and configured two BV-NET models
to account for them. For both product types, the cosine of the solar
zenith angle was included in the BV-NET input set; for S2 L2 A, the
view zenith and relative azimuth angles were also included.

Only the Red and Near Infrared bands (NIR) were kept for further
analysis; the remaining spectral bands were discarded. Four variables
(LAI, FAPAR, Red band and NIR band) pixel-based maps were thus
used to derive time series per FOI. Pixels whose centres fell within
the FOI boundaries, reduced by a 15 m inner buffer (to prevent from
using mixed pixels and reduce impact of the geometric precision),
were averaged using a zonal statistics technique; flagged values (cloud,
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Fig. 2. Overview of the conceptual data framework for crop classification to leverage satellite optical time series, yearly crop rotation history, and spatial local crop distributions.
cloud shadow, cirrus or snow) from QA layers were not included in the
averaging. FOI values were only considered valid if more than 75% of
the LAI pixels were valid.

Despite filtering the data using relevant QA layers, the resulting
FOI-based time series are still contaminated by missed cloud, cloud
shadow, haze or dense atmosphere. To remove these remaining
outliers, we applied a Hampel filter using red and NIR bands to discard
cloud and cloud-shadow in the time series respectively; the parameters
of the filter follow (Claverie et al., 2018).

Finally, filtered time series of four variables aggregated at FOI level
were smoothed individually using a Whittaker filter.8 The time series
are first gap-filled in time using a linear interpolation and a time
step of 2 days. We applied the Whittaker configuration with V-curve
optimization of the smoothing parameter and expectile smoothing
using asymmetric weight, with an ‘‘Envelope’’ value of 0.9 and a tested
lambda range between −1 and 1 (Eilers et al., 2017). This results in a
smoothed time series with a time step of 4 days and no interruption
between the seasons.

3. Methods

The feature extraction and the model architecture are first described
in Section 3.1), followed by a description of the learning model and
the integration of features as observations (Section 3.2). In Section 3.3,
we delve into the early-season data augmentation technique. Then
in Section 3.4, we explore the training process and the application of
models in various countries. Finally, Section 3.7 outlines the processing
facilities utilized in the study and includes links to the data and code.

3.1. Models description

A series of models were developed involving various configuration
and input modalities. The three modalities are RS, CR and Crop
Distribution (CD) (see the conceptual framework in Fig. 2). This section
describes the model and the integration of the data as features.

Crop rotation, defined as sequences of crops throughout the seasons,
has been modeled in a manner similar to a sequences of words within a
language model (Mikolov et al., 2010). This modeling process is further
enhanced by adding S2 time-series data, which is treated as analogous
to the prosody of a speaker (Wöllmer et al., 2013a,b; Schuller et al.,
2016), i.e. the pattern of intonation, stress and rhythm in a speech.9
Ultimately, the high-level spatial crop distribution features we add on
the last layer of the network can be seen as the distribution of the
words generally used by the speaker.

8 as developed by https://github.com/WFP-VAM/vam.whittaker
9 The RS encoding could use any other encoder type, like a state-of-the-art

model such as PSE-LTAE (Sainte Fare Garnot et al., 2020).
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3.1.1. Features extraction
Crop Rotation
The crop types labels were extracted from the respective GSA

and remapped using EuroCrops. This yields to a total of 𝑉𝑁𝐿 = 141
and 𝑉𝐹𝑅 = 151 classes, for NL and FR respectively, corresponding to
𝑉 = 225 unique classes. We modeled the crop by a one-hot vector of
size 𝑉 and used it as an input to an embedding layer. For each FOI, we
extracted the crop sequence which corresponds to the CR feature.

Remote sensing temporal integration
We integrated the RS time series into features using a sliding

window of size 𝑊 = 1 month with a step of size 𝑠𝑤 = 0.5𝑊 ,
obtaining a sequence of 𝑡𝑤 = 12

𝑠𝑤
= 24 inputs windows for the 12

months of the season, from 1st of October to 31st of September. By
utilizing this setup, we obtained some overlap between the windows,
which should prevent loss of information by breaking the signal
dynamics, albeit with a slight trade-off of redundancy in the features.
On every time window, the four RS signals (LAI, FAPAR, Red band
and NIR band) were integrated for each window using seven statistical
functionals (Schuller et al., 2016) representing the signal as a fixed
vector: average mean, standard deviation, min, max, median, first
quartile, third quartile. As a total, we obtained 4× 24× 7 = 672 features
per FOI per season. Finally, we normalized each of the 24 features.

Crop distribution
We computed the total area of each crops in a circle of radius

𝑟 = 10 km from each FOI and turned it to percentage of the total
cropped area. The crop type distribution around the FOI accounts
spatial for variation in terms of agricultural practices in relation with
local agro-meteorological conditions, economic and historical factors.
In the absence of major shocks, the distribution of the crop types
in a region is expected to be stable over the seasons (Merlos and
Hijmans, 2020), which determines the a priori probability of local crop
occurrence. We integrate this local information by adding a vector
representing the CD over the surrounding crop types centered around
each FOI centroid. The spatial CD was always derived from the same
season for computational reasons. We used the 2019 validation set
season, i.e. not for the test season 2020. We rounded the probability
at 10−4, leading to some values being 0 when not null. Despite the
EuroCrops harmonization, the crop lists of the two datasets (FR and
NL) are not identical. We used the union of the two crop lists for both
datasets.

3.1.2. Architecture of the models
Eight models were developed for the study. Their architectures are

presented hereafter and summarized in Table 2.

https://github.com/WFP-VAM/vam.whittaker
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Table 2
Summary of the different models used in this paper, using Crop Rotations (CR), Remote Sensing (RS), and
Crop Distribution (CD).

Models CR RS CD Modelisation-level Hierarchical

Within season Between seasons

IntraYE𝑅𝑆 ✗ ✓ ✗ ✓ ✗ ✗

IntraYE𝑀𝑀 ✓ ✓ ✗ ✓ ✗ ✗

InterYE𝐶𝑟𝑜𝑝 ✓ ✗ ✗ ✗ ✓ ✗

InterYE𝑅𝑆 ✗ ✓ ✗ ✗ ✓ ✗

InterYE𝑀𝑀 ✓ ✓ ✗ ✗ ✓ ✗

HierE𝑅𝑆 ✗ ✓ ✗ ✓ ✓ ✓

HierE𝑀𝑀 ✓ ✓ ✗ ✓ ✓ ✓

HierE𝑓𝑖𝑛𝑎𝑙 ✓ ✓ ✓ ✓ ✓ ✓
c
m

Baselines using year-independent models. We used two baselines models
that treat the RS time series signal in a classical way without using
hierarchical networks and without modeling the dynamics between
the seasons. One unimodal model is using only RS data and another
one is multimodal using RS and CR, based respectively on the works
of Rußwurm et al. (2019a) and Quinton and Landrieu (2021). These
models are referred to as 𝐈𝐧𝐭𝐫𝐚𝐘𝐄𝑅𝑆 and 𝐈𝐧𝐭𝐫𝐚𝐘𝐄𝑀𝑀 , respectively.

As stated in Rußwurm et al. (2019a), they only consider the
time series of a single season, without incorporating a multi-season
modeling approach for the RS data which is a key aspect of our
proposed approach.10 This unimodal network InterYE𝑅𝑆 is the identical
component utilized for encoding the RS signal at the season-level (one
green Intra-Year Encoder (IntraYE) in Fig. 3). This provides a strong
RS unimodal baseline. The second baseline that we add comes from
the work of Quinton and Landrieu (2021), which is the strongest
baseline among the three works incorporating CR as per with RS data.
It integrates the CR modality by using a one-hot encoder vector of the
past crop sequence. In our case, as we model the crops as words, this
would mean a well-known simple vector representation for text called
Bag-of-Words (Harris, 1954), hence we will call it Bag-of-Crops BoC.
Although this type of representation is known to not work well for
short texts like tweets or speech turns (Benamara et al., 2016; Barriere
et al., 2018; Barriere, 2017; Barriere et al., 2017), we can expect better
results with crop sequences which are considerably less complex than
natural language.

Multi-year non-hierarchical models. Following the introduction, a set of
novel model architectures is suggested hereafter, and their performance
is evaluated in comparison to the existing baseline models. We first
aimed to model the sequence of seasons with a recurrent encoder.
These models use season-level features (that can be CR or RS) and are
called Inter-Year Encoder (InterYE). This corresponds to the orange top
Encoder in Fig. 3, modeling the sequence of seasons.

We modeled the multi-annual crop rotations in a language model
fashion by representing the crops as tokens and learning to predict
the next one. This model takes the past sequence of crops (𝑐1,… , 𝑐𝑡)
as inputs and output the new crop 𝑐𝑡+1, modeling the crop rotation
dynamics through the seasons. This corresponds to the orange InterYE
in Fig. 3, if only using crop embeddings. It does not use the blue
local crop distribution vector. This unimodal model is denoted
𝐈𝐧𝐭𝐞𝐫𝐘𝐄𝐶𝑟𝑜𝑝, corresponding to an unimodal Crop Rotations model.

Using solely previous rotations to forecast future crop yields results
in inadequate performance due to the limited amount of information
provided. Therefore, we decided to enhance the model’s robustness by
incorporating satellite data, leveraging either the consensus principle
or the complementary principle (Xu et al., 2013). We enhanced the
unimodal model InterYE𝐶𝑟𝑜𝑝 by adding season-level information from
RS. This corresponds to the orange InterYE in Fig. 3, with a green
vector being the season-level concatenation of the RS signal (without
being processed by the green IntraYE). It does not include the blue

10 This will be shown in next paragraph.
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local crop distribution vector. This model is denoted as 𝐈𝐧𝐭𝐞𝐫𝐘𝐄𝑀𝑀 ,
orresponding to a non-hierarchical multimodal model with RS. If the
odel only uses the RS modality, then it is denoted as 𝐈𝐧𝐭𝐞𝐫𝐘𝐄𝑅𝑆 .

Multi-year hierarchical models. We chose to model jointly the inter-
year and intra-year dynamics with a hierarchical model composed of
one network modeling the RS dynamics within a season underneath
another network modeling the rotation dynamics between the seasons.
We processed the RS signal beforehand using another RNN, before
concatenating this unimodal RS vector obtained with the crop
embedding, in a hierarchical way.

We incorporated the sequential aspect of the RS time-series by
processing the RS features at the season level with a first sequential
encoder before adding their yearly representation into the second
neural network modeling the crop types, leading to a hierarchical
network with one top network modeling the sequence outputs of
another bottom network (Serban et al., 2015).

Compared to InterYE𝑀𝑀 and InterYE𝑅𝑆 , there is another network
modeling the RS signal at the bottom. This corresponds to the orange
color top InterYE and the green color IntraYE in Fig. 3, modeling
between the seasons as well as within a season. It does not use the blue
local crop distribution vector. This model is denoted as 𝐇𝐢𝐞𝐫𝐄𝑀𝑀 ,
corresponding thus to a hierarchical iIntraYE and InterYE to model
both crop rotation and RS time-series.

We enhanced the model by adding the CD vector after the IntraYE
because it is a high-level feature regarding the task we are tackling and
the deeper you go into the layers the higher-level the representations
are w.r.t. the task (Sanh et al., 2018). This corresponds to the full
network presented in Fig. 3, including the blue local crop distribution
vector. This model is denoted as 𝐇𝐢𝐞𝐫𝐄𝑓𝑖𝑛𝑎𝑙, corresponding thus to a
hierarchical IntraYE and InterYE to model the three modalities.

Encoders. We compared several type of models using different archi-
tectures and different modalities. Because our work mainly focuses
on how to integrate multimodal data, we opted to use RNN-LSTM
backbones, proven competitive for this kind of task (Rußwurm and
Körner, 2020). Our method is also applicable using other encoders such
as transformers (Vaswani et al., 2017) or Gated Recurrent Units (Chung
et al., 2015).

For the Inter-year encoder, we first add an embedding layer to
transform the crop type 𝑐𝑡 at season 𝑡 into a vector 𝐞𝐦𝐛𝑡 = 𝑓𝑒(𝑐𝑡). This
embedding vector 𝐞𝐦𝐛𝑡 is used as input of the LSTM to produce a
hidden state ℎ𝑡 at season 𝑡 as seen in Eq. (1), which will be used to
predict the next crop 𝑐𝑡+1 in Eq. (2).

𝐡𝑡 = LSTM𝑦(𝐞𝐦𝐛𝑡,𝐡𝑡−1) (1)

𝑃 (𝑐𝑡+1|𝑐𝑡,… , 𝑐1) = 𝑓𝑐 (𝐡𝑡) (2)

The RS features were integrated at the season-level into a feature
vector 𝐑𝐒𝑡 before the modeling of the crop types by the LSTM. We
feed the season 𝑡 feature vector 𝐑𝐒𝑡 into a neural network layer 𝑓𝑟𝑠
to reduce its size and then concatenate it with the crop embeddings
before the LSTM (see Eq. (3)), using 𝐞𝐦𝐛 instead of 𝐞𝐦𝐛 in Eq. (1).
𝑀𝑀𝑡 𝑡
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Fig. 3. Hierarchical Multimodal Model Conceptual Diagram. The two experiments, NL and FR, are represented with actual seasons used,2013–2020 and 2015–2020 for NL and
FR, respectively. Crop type of 2020 season is the final predicted label used for the test set.
𝐞𝐦𝐛𝑀𝑀𝑡
= [𝐞𝐦𝐛𝑡, 𝑓𝑟𝑠(𝐑𝐒𝑡)] (3)

For the IntraYE, we chose to use a bidirectional LSTM (biLSTM)
with a self-attention mechanism (Bahdanau et al., 2016) following the
assumption that some parts of the season are more important than
others to discriminate the crop type. The biLSTM is composed of two
LSTM, one of which reads the sequence forward and the other reads it
backward. The final hidden states are a concatenation of the forward
and backward hidden states. For a sequence of inputs [𝐑𝐒𝑡1 ,… ,𝐑𝐒𝑡𝑤 ]
it outputs 𝑤 hidden states [𝐡𝑅𝑆𝑡1

,… ,𝐡𝑅𝑆𝑡𝑤
]. The self-attention layer11

will compute the scalar weights 𝑢𝑡𝑤 for each of the 𝐡𝑅𝑆𝑡𝑤
(see Eq. (4))

in order to aggregate them to obtain the final state 𝐡𝑅𝑆𝑡
(see Eq. (5)).

𝑢𝑡𝑤 = 𝑎𝑡𝑡(𝐡𝑅𝑆𝑡𝑤
) (4)

𝐡𝑅𝑆𝑡
=
∑

𝑤
𝑢𝑡𝑤𝐡𝑅𝑆𝑡𝑤

(5)

For the crop distribution, we concatenated the hidden state 𝐡𝑡 of the
LSTM with the crop distribution vector 𝐝 and mixed them using two
fully connected layers 𝑓𝑓𝑐1 and 𝑓𝑓𝑐2 (see Eq. (6)). Hence, we obtain 𝐡𝑑𝑡
instead of 𝐡𝑡 before the final fully connected layer 𝑓𝑓𝑐 from Eq. (2).

𝐡𝑑𝑡 = 𝑓𝑓𝑐2(𝑓𝑓𝑐1([𝐡𝑡,𝐝])) (6)

3.2. Automatic data- and knowledge-driven label aggregation

3.2.1. Rationale
Training and evaluating a model at large scale, on regions

that contain different agro-climatic zones is complex due to the
heterogeneity of the temporal and spectral representations of the
crops and variability of the climate and agricultural practices. Indeed,
if the labels distribution is highly variable between two datasets,
one label that was representative in one domain would become not
representative in the other. In this work we propose an aggregation of

11 composed of a feedforward, a relu, another feedforward and a softmax
layers.
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the labels, that would be on the one hand representative of the dataset,
and on the other hand thematically pertinent. In this way, it should
be possible to evaluate the performances of the classification model
at different scales: using all the labels from the region, even the ones
with very few examples, then using an aggregation of labels that is
representative of the region. This also offers the advantage to evaluate
a model on two different datasets with a relevant evaluation on each
dataset. We discuss this method in Section 5.1.

3.2.2. A hierarchical method to group labels
The labels obtained with the Hierarchical Crop and Agriculture

Taxonomy from EuroCrops (see Section 2.1) have heterogeneous
distribution and level of interest because of geographically constrained
occurrence. We propose a method to merge non-representative crops
together to only keep the most relevant in a region of interest by
using its label distribution. The method is applied for the evaluation
only. We take the best of both worlds by fusing expert knowledge and
data-driven method. The method is applicable to any dataset, at any
geographic scale and fully automatic.

Benefiting on the hierarchical structure of EuroCrops, we selected
crops for which the number of FOI is above a given threshold (𝑡ℎ).
The crops with number of FOI below 𝑡ℎ are merged together with the
other EuroCrops-sibling crops toward their parent-class. The remaining
number of FOI falling down into the parent-class is compared with the
threshold for an iterative process.

For both countries, we set the threshold 𝑡ℎ at 0.3% of the dataset
size, which roughly corresponds to 2k samples for the NL and 20k
samples for FR. We regrouped all the classes falling under the subclass
‘‘Permanent Crops’’ together as one for both datasets, as they are the
simplest examples to classify when considering rotations. This was
done to mitigate its impact by creating multiple labels for permanent
crops. The automatic aggregation over FR and NL is shown in Fig. 4.

3.3. Early-season data augmentation

Applying the end-of-season models (i.e. trained with the data from
the whole season) for early-season (i.e. using incomplete time-series)
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Fig. 4. Aggregated classes selected for validation in each country for FR (A) and NL (B) along with the distribution. The color highlight the crop type or crop group that were
assessed for both country in red and only for one respective country in cyan.. (For interpretation of the references to color in this figure legend, the reader is referred to the web
version of this article.)
Table 3
Settings of the different experiments. 𝑁 ∈ {4, 6, 8, 10} for the few-shot experiments.

Name Pre-Training Training Testing # data from target Models

few-shot-NL ∅ NL NL 2𝑁 HierE𝑓𝑖𝑛𝑎𝑙
few-shot-FR ∅ FR FR 2𝑁 HierE𝑓𝑖𝑛𝑎𝑙

Vanilla-FR ∅ FR FR 100% All models
Vanilla-NL ∅ NL NL 100% All models

0-shot-NL ∅ FR NL 0 HierE𝑓𝑖𝑛𝑎𝑙
Transfer-few-shot-NL FR NL NL 2𝑁 HierE𝑓𝑖𝑛𝑎𝑙
transfer-NL FR NL NL 100% HierE𝑓𝑖𝑛𝑎𝑙
Transfer-FR NL FR FR 100% HierE𝑓𝑖𝑛𝑎𝑙
9
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is not suitable. We propose a data-augmentation technique in order
to help the model to classify a sample even without getting the full
time series of the season. The idea behind this method is to force the
model to predict the right class even though it does not observe the
full time-series, as it would do at end-of-season.

We follow the approach of Barriere and Claverie (2022) by
randomly cropping the end of the vector feature of the RS data
𝑅𝑆 = (𝑅𝑆1,… , 𝑅𝑆𝑡𝑤 ), 𝑡𝑤 being the last bi-monthly date of the time-
series varying between 10 and 24. By setting the minimum number of
steps to 10, we ensure that each sample contains sufficient information
(at least 5 months) to facilitate the training phase. Knowing the start of
the time-series is October, it means we do not crop the end of the time
series up to 1st of March. We used the same cropping size 𝑡 among all
the samples of the same mini-batch. For the hierarchical models, we
used the same cropping size 𝑡 among all the seasons.

3.4. Transfer learning between countries

We ran several experiments in order to take advantage of the
normalized taxonomy that we used for both countries, by investigating
the potential of transferring knowledge between different domains. For
these purposes, we compared the performances of a model trained
from scratch (i.e. Vanilla) and a model pre-trained over one country
before being fine-tuned over another one. This pre-training allows to
transfer knowledge from a source task and domain to a target task and
domain.

We tested this approach in (i) cross-domain zero-shot setting, for
which the pre-trained model does not see any samples of the new
domain, and (ii) cross-domain few-shot setting,12 for which the pre-
trained model sees limited number samples of the new domain. For
the cross-domain zero-shot setting, we used a network that was trained
over one country on the other country, without fine-tuning it. For the
cross-domain few-shot setting, we fine-tuned the network only on a
subset of the target dataset, taking few examples representative of this
dataset. We generated the few-shot subsets by randomly sampling 2𝑁

with 𝑁 ∈ {4, 6, 8, 10}) examples of each of the aggregated class (see
ection 4.1). For this, we sampled using the global crop distribution
f 2019, which was used as validation cropping season. We think that
his setup is realistic as we only sample from the aggregated classes
hat are the prominent ones in each of the datasets, and the ones to
alculate the metrics to validate the models. We added more and more
ata increasingly so that all the examples from 2𝑁1 are comprised in
𝑁2 , with 𝑁1 < 𝑁2. A summary of the different experiments can be
een in Table 3. We did not freeze any layer during the fine-tuning.

.5. Dataset segmentation and validation

The datasets are generally split regarding time or space. Weilandt
t al. (2023) proposed to compare the results of models trained with
r without training data from the same cropping season as the test
eason, in end-of-season and early-season settings. They found out that
he difference in performance was minimal.

In this work, we are interested to apply early-season setting and
herefore segmenting the train and test sets among seasons. This
rovides two key advantages: we are in a real-life setting without
n-situ data from the test season, and prohibit training with data from
he end of the season in early-season setting. We trained our networks
s for a sequence classification task, always with several seasons of
ata. The labels up to 2018 were used as training set, while the labels
rom 2019 were used as validation set and the labels from 2020 as test
et (see Fig. 3). All results presented hereafter refer to the analysis of
020 crop types, which are based on models trained with the period
013–2019 for NL and 2015–2019 for FR, thus independent from the

12 i.e. when the domain changes as per with significantly new labels.
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2020 crop types observations. We zero-padded when no RS data was
available (before 2016).

In order to confirm (Weilandt et al., 2023) findings, we added
experiments with a temporal and spatial split of the data in
Appendix B, showing that the results of a model trained on other
seasons and other parcels still reach high results.

We validated the models using metrics calculated for four level of
aggregation: (i) with all the labels, (ii) with the aggregation of the
labels using the Automatic Hierarchical Label Aggregation, (iii) with
a set of crop of interest from the aggregation that were recognized
important by a Food Security expert and with or (iv) without classes
others and grassland (majority class in NL dataset). We used macro-
verage of the Precision, Recall and F1-score because the dataset is
mbalanced. We also used micro-F1 score (m-F1) for the last setting,
ecause accuracy is not possible when focusing on a subset of the
lasses. In addition, we computed the Accuracy as a general metric.

.6. Implementation

We trained all the networks via mini-batch stochastic gradient
escent using the Adam optimizer (Kingma and Ba, 2014) with a
earning rate of 10−3 and a cross-entropy loss function. The number
f neurons for the crop embedding layer(from 16 to 128, best 64),
oth the RNN internal layers (from 64 to 512, best 256) and the fully
onnected RS layer 𝑓𝑟𝑠 (from 32 to 256, best 128), as well as the

number of stacked LSTM (from 1 to 4, best 3) were chosen using
hyperparameters grid search of power of 2 on a subset of the NL
dataset. The sizes of the layers 𝑓𝑐1 and 𝑓𝑐2 are the same as the one
from the second RNN state 𝐡𝑡.

3.7. Processing facility, data and code

The EO extraction and processing, the classification and the
benchmarking were performed on the JRC Big Data Analytics Platform
(BDAP) using an HTCondor environment (Soille et al., 2018). The
platform13 has been built upon the near-data processing concept, which
prescribes placing the computing facility close to the storage units
to avoid the bottleneck of delaying or degrading interconnection.
Experiments with the neural networks were run using PyTorch
1.4.0 (Paszke et al., 2019) on a GPU Nvidia RTX-8000 using CUDA
12.0. The training phase allows to process between roughly 5k and
30k examples per seconds, with each example containing 4 seasons of
data.

The data extracted and used for this study are openly available
on the public FTP.14 The code for the data processing, the labels
aggregation, and deep learning experiments will be freely available
after publication.15

4. Experiments and results

4.1. Feature extractions

4.1.1. Crop rotation
The crop label categories for the 2020 test set correspond to a

long-tailed class distributions, as shown for the 32-class and 24-class
aggregations for the French and the Dutch data sets in Figs. 5 and
6, respectively. The models are finally validated on a set of crops
of interest from the 32-class and 24-class aggregation. Those 8- and
12-class, respectively for the NL and FR, were identified by experts as
essential for crop production monitoring and food security. They are
shown in green in Figs. 5 and 6.

13 https://jeodpp.jrc.ec.europa.eu/bdap/
14 The data can be downloaded on https://jeodpp.jrc.ec.europa.eu/ftp/jrc-

opendata/DRLL/CropDeepTrans/.
15 Add URL after publication.

https://jeodpp.jrc.ec.europa.eu/bdap/
https://jeodpp.jrc.ec.europa.eu/ftp/jrc-opendata/DRLL/CropDeepTrans/
https://jeodpp.jrc.ec.europa.eu/ftp/jrc-opendata/DRLL/CropDeepTrans/
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Fig. 5. Distributions of the crop types in the NL dataset for the test season (2020), after aggregation. Green bars are the selected crops for the 8-class evaluation; Red bars refer to
the grasslands, and blue bars to the remaining crops.. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
Fig. 6. Distributions of the crop types in the France dataset for the test season (2020), after aggregation. Green bars are the selected crops for the 12-class evaluation; Red bars
refer to the grasslands, and blue bars to the remaining crops.. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this
article.)
4.1.2. RS-based features
First, the RS data retrieved as described in 2.3 were obtained. To

support our development, we have released a SITS dataset, which is
significantly larger in terms of number of parcel and length of the
time series than any other existing SITS datasets (Selea, 2023). The
processing of RS data, which incorporates a smoothing algorithm, sets
this dataset apart from others in its category. The final dataset which
consists in the full time series of more than 7M FOI, for a total of
more than 35M FOI-season (NL : 5 seasons 𝑥 596k FOI; FR: 5 seasons
𝑥 6,49M) are available for download, as well as the extracted features
used in the experiments.16

4.2. In-country end-of-season results

The results of the various models on France and the NL are shown
in Tables 4 and 5 with respect to four distinct classification schemes,
ranging from a fine-grained 141-class scheme for NL (resp. 151 for
FR) to a coarse-grained 10-class scheme (resp. 14 for FR). The 8-class
scheme (resp. 12 for FR) is the same than the 10-class one, in order
to only focus the performances on the crops of interest. Tables 4 and
5 aim at showing the interest of our multi-modal method compared to

16 https://jeodpp.jrc.ec.europa.eu/ftp/jrc-opendata/DRLL/CropDeepTrans/
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what is generally used in the field, by using only the remote sensing of
the season, in an independent way.

4.3. In-country early-season results

We compared the performance of our best model trained without
the data-augmentation technique, i.e. trained solely on end-of-season
classification examples, with an early-season model of the same
architecture trained using the proposed data-augmentation technique
(see Section 3.3). Comparisons were also made with a unimodal model
using only the CR, and an unimodal IntraYE𝑅𝑆 enhanced with the
data-augmentation technique.

Fig. 7 shows the performances of the model in terms of micro-F1
on the set of 10 crops. For sake of clarity, we focused on the results of
the model trained using this data-augmentation over the NL.

4.4. Cross-country transfer learning results

Table 6 shows the performance of our best architecture model on
the NL. The neural network was trained either from scratch or using a
pre-trained model. We compared its performances on a few-shot setting
against using the full NL dataset. The table shows that pre-training
the model led to improved performance in terms of almost in terms
of all metrics for all tasks. Furthermore, the performance increases

https://jeodpp.jrc.ec.europa.eu/ftp/jrc-opendata/DRLL/CropDeepTrans/
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Table 4
Results over Netherlands of the end-of-season classification models with different modalities: Remote Sensing (RS), Crop Rotations as embeddings (C) or BoC,
and Spatial Crop Distribution. The metrics shown are macro Precision (P), Recall (R) and F1 score, as well as accuracy and micro-F1 score (m-F1).
Labels # Modalities 141-class 24-class 10-class 8-class

Model P R F1 Acc P R F1 Acc P R F1 Acc P R F1 m-F1

InterYE𝐶𝑟𝑜𝑝 1 (C) 36.0 25.5 27.4 76.2 53.3 37.2 39.1 76.5 51.8 43.0 43.5 77.7 43.3 35.5 34.9 53.6

IntraYE𝑅𝑆 2019a 1 (RS) 27.4 20.9 20.4 89.8 64.0 60.9 60.4 90.3 78.8 75.9 74.5 92.9 76.1 72.6 70.8 87.8
InterYE𝑅𝑆 1 (RS) 22.8 17.7 17.1 89.1 59.2 58.5 57.3 89.6 71.2 73.4 72.0 92.1 67.0 69.6 68.0 85.6
HierE𝑅𝑆 1 (RS) 20.7 17.5 16.7 90.2 64.3 61.0 61.2 90.9 80.5 74.4 74.3 93.5 78.0 70.4 70.3 88.3

IntraYE𝑀𝑀 2021 2 (RS+BoC) 55.6 39.7 43.2 92.8 76.6 69.8 72.1 93.1 83.0 80.5 80.9 94.7 80.2 77.9 78.0 90.0
InterYE𝑀𝑀 2 (RS+C) 41.1 33.0 33.6 92.2 70.8 70.5 69.9 92.6 82.2 79.7 80.4 94.5 80.2 76.3 77.5 89.5
HierE𝑀𝑀 2 (RS+C) 47.3 38.7 39.7 93.3 74.7 75.5 74.7 93.7 85.2 81.9 83.1 95.2 83.6 78.8 80.6 91.1
HierE𝑓𝑖𝑛𝑎𝑙 3 (All) 47.1 39.3 40.2 93.6 76.6 75.8 75.7 94.0 86.7 81.9 83.6 95.5 85.3 78.7 81.1 91.6
Table 5
Results over France of the end-of-season classification models with different modalities: Remote Sensing (RS), Crop Rotations as embeddings (C) or Bag-of-Crops
(BoC), and Spatial Crop Distribution. The metrics shown are macro precision, recall and F1 score, as well as accuracy and micro-F1 score (m-F1).
Labels # Modalities 151-class 32-class 14-class 12-class

Model P R F1 Acc P R F1 Acc P R F1 Acc P R F1 m-F1

InterYE𝐶𝑟𝑜𝑝 1 (C) 35.6 31.0 31.7 66.0 43.7 38.8 38.7 66.2 38.9 34.3 31.7 69.1 30.9 26.4 23.0 42.7

IntraYE𝑅𝑆 2019a 1 (RS) 22.9 15.7 15.2 64.0 51.1 46.0 44.6 64.5 69.8 62.2 64.7 75.7 69.3 59.7 63.1 74.6
InterYE𝑅𝑆 1 (RS) 21.3 13.2 12.6 54.9 46.5 41.5 39.2 55.5 63.9 59.6 60.2 72.2 62.7 57.4 58.5 71.2
HierE𝑅𝑆 1 (RS) 25.3 19.0 18.8 66.3 55.5 50.7 50.1 66.9 72.5 65.5 67.7 76.9 71.9 63.2 66.1 76.5

IntraYE𝑀𝑀 2021 2 (RS+BoC) 52.7 32.4 35.9 82.7 70.1 59.3 61.8 82.8 78.1 68.7 71.0 86.6 76.2 65.6 68.0 80.3
InterYE𝑀𝑀 2 (RS+C) 45.9 35.2 36.4 82.4 67.7 60.5 62.4 82.7 72.7 67.4 69.2 86.1 70.0 63.6 65.8 77.5
HierE𝑀𝑀 2 (RS+C) 50.2 41.9 43.2 84.8 70.7 67.6 68.2 85.0 77.0 73.4 74.9 88.4 75.0 70.2 72.3 81.8
HierE𝑓𝑖𝑛𝑎𝑙 3 (All) 45.1 37.3 38.1 85.4 72.1 68.8 69.2 85.7 79.8 76.1 77.6 89.1 78.1 73.5 75.4 83.6
Table 6
Results over Netherlands of the few-shot final classification models, with or without pre-training over France. N represent the number of examples shown per
aggregated class on the target dataset. The metrics shown are macro precision, recall and F1 score, as well as accuracy and micro-F1 score (m-F1). N stands for
the Few-Shot size.
Labels N 141-class 24-class 10-class 8-class

Pre-train. P R F1 Acc P R F1 Acc P R F1 Acc P R F1 m-F1

✗

0 ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅
16 5.8 5.1 4.8 70.8 23.7 21.4 20.4 71.1 38.5 37.4 36.3 73.6 38.5 37.4 36.3 45.3
64 2.7 2.5 2.2 69.2 17.1 13.1 12.5 69.4 27.3 25.7 23.3 69.6 27.3 25.7 23.3 34.7
256 4.2 4.8 2.9 66.5 18.2 16.9 14.1 66.8 25.0 23.2 20.5 68.1 25.0 23.2 20.5 20.4
1024 19.6 13.3 12.4 80.8 53.6 39.8 37.2 80.3 69.7 60.4 61.5 84.0 69.7 60.4 61.5 76.3

✓

0 5.7 4.8 4.2 47.3 14.7 15.1 11.1 46.6 20.6 19.7 16.6 46.9 12.3 7.4 8.4 24.5
16 12.2 7.8 7.6 70.3 30.5 23.8 24.5 70.4 37.9 33.9 34.0 72.3 37.9 33.9 34.0 45.2
64 16.7 13.6 13.5 74.7 41.9 38.7 38.1 75.0 51.6 45.4 46.6 76.4 51.6 45.4 46.6 54.4
256 25.8 21.4 20.8 82.5 55.6 51.1 50.6 82.7 67.3 58.0 60.1 84.6 67.3 58.0 60.1 69.2
1024 32.7 27.3 26.0 84.9 61.3 57.3 54.3 84.9 73.8 72.0 71.6 87.0 73.8 72.0 71.6 80.9

✗ All 47.1 39.2 40.2 93.7 76.6 75.8 75.8 94.0 86.7 81.9 83.6 95.5 85.3 78.7 81.1 91.6
✓ All 42.5 35.3 36.0 92.8 67.3 53.4 55.9 94.2 89.9 82.2 85.3 95.7 88.8 77.6 82.3 91.8
Fig. 7. Comparison of early classification using different modalities, with/out data augmentation (macro-F1 with 10 classes) on Netherlands.
12



Remote Sensing of Environment 305 (2024) 114110V. Barriere et al.
Fig. 8. Comparison of the F1-scores by crops of the best hierarchical multimodal model and the model using different modalities (Crop rotation, Remote sensing only and all) on
the Netherlands. We used the InterYE𝐶𝑟𝑜𝑝 (in blue), IntraYE𝑅𝑆 (in orange) and HierE𝑓𝑖𝑛𝑎𝑙 (in green) models.. (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)
with the number of training examples, and the highest performance
was achieved for 1024 training examples for each aggregated class.
Notice that the non-pretrained model (i.e., red-cross) using 𝑁 = 𝐴𝑙𝑙
corresponds to HierE𝑓𝑖𝑛𝑎𝑙 from Table 4.

5. Discussion

The results are discussed in the five first subsections of the section,
then followed by a presentation of the limitations (Section 5.6) and
recommendations for future research (Section 5.7).

5.1. The label aggregation method

In line with second objective, we introduced a distinct bench-
marking approach that utilizes HCATv2, the hierarchical crop type
classification system of EuroCrops. This is a method to output pertinent
metrics on a dataset that has many classes with a long tail distribution,
by grouping together the minoritarian classes that are similar (i.e. close
in the HCATv2 graph). In Table 4 (NL) and Table 5 (FR), the
aggregation level is displayed in the 24-class and 32-class columns,
respectively. This means that the performance results for both countries
incorporate the internal distributions. Overall, the accuracy scores for
both countries did not exhibit significant variation when accounting
for all EuroCrops classes (93.6 and 85.4, for NL and FR, respectively)
or after aggregation (94.0 and 85.7), suggesting that the models
performed well on the very dominant classes. However, the macro F1-
scores experienced an improvement due to the merging of classes with
a limited number of samples: it reveals the interest of the aggregation
method for classifier performances evaluation on a dataset with a high
number of crop classes.

5.2. Hierarchical multimodal models: a way to gain in performances

The third objective of the study (Section 1.2) is to evaluate
the performances of models relying on diverse model configurations
involving different modalities.

For the NL, the results of Table 4 indicate that the best performance
was achieved by the final model (HierE𝑓𝑖𝑛𝑎𝑙) combining the three
modalities. It achieved a macro-F1 score of 40.2% on the 141-class
scheme and a micro-F1 score of 91.6% on the 8-class scheme. With the
exception of HierE𝑅𝑆 , which failed to learn during the optimization
process even on the training set (achieving an F1 score of 0 for both
the 8- and 12-class settings), all models based on LSTM to process
RS time series achieve higher performances compared to the approach
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of concatenating statistical functional vectors of each sliding window.
Notably, the unimodal IntraYE𝑅𝑆 outperformed InterYE𝑅𝑆 , while the
multimodal IntraYE𝑀𝑀 and HierE𝑀𝑀 outperform InterYE𝑀𝑀 . More
details are found in the next Section 5.3.

Several similarities and notable differences can be observed when
comparing the models between the NL 4 and FR 5. First, the general
performance metrics were lower for FR than for the NL. This difference
may be attributed to FR having more classes than the NL. Second, the
performances of the RS model’s performance using only one season of
context (InterYE𝑅𝑆 ) were significantly lower than for the same one on
NL, relatively to the other models. The higher variance of the RS data
in FR, resulting from its larger size and greater diversity compared
to the NL, may contribute to the lower performances observed in this
scenario.

5.3. Performances per crops

The utilization of various modalities and their combinations for
each of the primary crops in both countries is depicted in Figs. 8 and
9. It demonstrated an upward trend in the level of improvement with
an increase in the number of modalities employed. The benefits of crop
rotation were more significant for certain crops such as pasture, while
others such as beetroot are harder to predict without RS signal. This
suggested that the crop rotation for FR, limited to only starting from
2015, might not offer enough information to accurately predict crops
in complex or irregular crop rotation sequences.

Fig. 10 provides more detailed information on the performance of
the best model in the NL. It displays the F1 scores for eight crops
of interest in the NL, based on the time of the season used for
prediction. Furthermore, for the same crops, we analyzed the time
series data for the 2020 cropping season (i.e., the test season) averaged
at the country level for each of the four remotely sensed variables
on Fig. A.2, accompanied by the standard error shown on Fig. A.3.
These visualizations highlight both the variability between crops and
the potential confusion that can arise between different crop types.
As the season progresses, there is a noticeable trend of increasing
F1-scores, highlighting the improved accuracy of crop discrimination.
However, there are evident disparities among crops. Notably, grassland
demonstrates a high F1-score at the season’s onset and maintains this
level from the end of spring onwards. This is attributed to the fact that
the unique temporal signature of grassland phenology does not provide
significant discriminatory power as the season advances. Contrarily,
crops with distinct morphological and phenological characteristics,
such as potatoes, green silo maize, and sugar beet, achieve higher
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Fig. 9. Comparison of the F1-scores by crops of the best hierarchical multimodal model and the model using different modalities (Crop rotation, Remote sensing only and all) on
France We used the InterYE𝐶𝑟𝑜𝑝, IntraYE𝑅𝑆 and HierE𝑓𝑖𝑛𝑎𝑙 models.
Fig. 10. F1-score for each crop group along the season for NL. When crop have winter and spring varieties, the spring varieties are represented as dashed lines.
F1-scores earlier in the season. The F1-score of barley reaches a peak
of 0.75 by the end of July. An intriguing observation is that during
the early spring, spring barley exhibits a higher F1-score. However, by
June, winter barley surpasses it. This shift can be elucidated by the
differential crop calendars that spring and winter barley adhere to.

The end-of-season performances of the models in the NL and FR,
denoted as HierE𝑓𝑖𝑛𝑎𝑙, are presented using 5 km grid cell maps in
Figs. 11 and 12 respectively. The maps reveal notable regional effects,
particularly in FR. For instance, in Brittany (located in the north-west
of FR), lower accuracy was observed for most crops, especially winter
barley. It worth noting that despite labeling the crop types uniformly
by country, variations in crop varieties, climates, and agricultural
practices among farmers have an impact on phenology, consequently
affecting the RS signal. Consequently, using a single dataset for
training the model resulted in heterogeneous performances over a large
country like FR. The development of regional models is thus highly
recommended. Furthermore, the model lacks information regarding
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the specific locations, except through the proxy of crop distribution.
Incorporating geographic coordinates and/or weather variables as
model inputs could contribute to accounting for spatial variations over
large areas, such as FR.

The confusion matrices for both countries can be seen in Fig. 13.
Because of the highly imbalanced distribution of the labels, we
classically normalized each matrix regarding the predicted values
(i.e. by row) for visibility reasons. Hence, the diagonal cells represent
the precision of the model on each class. We display the values in
percentage, meaning they go from 0 to 100. These matrices allow
for grouping crops based on the observed confusions. In general, for
both countries, there are instances of misclassification between crops,
indicating difficulties in distinguishing between certain crop types: (i)
between green silo maize and grain maize corn popcorn, (ii) between
winter cereals (winter common soft wheat, winter barley, winter triticale),
(iii) between spring cereals (spring barley, spring common soft wheat) ,
(iv) between summer crops sunflower, millet/sorghum. These confusions
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Fig. 11. Map of F1 for the six most important crops over The Netherlands. The F1-score is computed for each crop and for each 5 km grid cell. Grid cells with less than 50ha
(i.e., 2% of the land) of the given crops are not plotted. Map projection is EPSG:3035.
Fig. 12. Map of F1 for the six most important crops over Metropolitan France. See legend of Fig. 11.
are anticipated as they occur with synchronous phenologies of the
crops that could differs significantly from one region to the other in
Europe (d’Andrimont et al., 2020, 2021; Meroni et al., 2021).

5.4. Early-season models

The use of sub-setting technique, intended for early-season classi-
fication, was found to be ineffective in improving the performance of
a model solely trained on remote sensing data, as shown in Fig. 7.
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However, when the multimodal model including crop rotations was
applied, it resulted in improved performances as early as May. It is
worth noting that the overall performances of the multimodal model
was observed to be inferior to that of a unimodal crop-only model.
This was due to the model overemphasizing the RS modality as the
season progressed. To address this issue, a gate mechanism could be
incorporated, as proposed in Arevalo et al. (2017) and Chen et al.
(2017), which selectively discards noisy modalities. By utilizing the
multimodal hierarchical configuration, the model achieved around
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Fig. 13. Confusion matrices for the 10- and 14-class settings for Netherlands and France, respectively. True labels are in rows and predicted label are in columns, with a
column-level normalization.
mid-July 95% of the end-of-season overall accuracy. This corresponds
to the period when the winter crops are harvested, and the summer
crops reach their peak vegetation.

In Fig. 10, the HierE𝑀𝑀 model data-augmented model was assessed
through time. F-score are provided for the 10 classes of interest for NL,
as defined in Section 4. Overall, there was an offset of the curve rise-up.
The shift is earlier (from mid-April to mid-June), which was consistent
with other studies (Rußwurm et al., 2023).

5.5. Cross-country transfer learning results

According to Table 6, there were two notable distinctions between
the models pre-trained on FR and the ones trained from scratch. The
first distinction pertained to few-shot setting, where the pre-training
enables not only superior but also more consistent results in few-
shot classification, reducing dependence on the specific examples used
during few-shot training. The second distinction lies in the full-data
setting, where we observed that the from-scratch model performs
better when validated with 141 and 24 classes (with an m-F1 score
of 40.2 and 75.8, respectively, compared to 36.0 and 55.9), while
the pre-trained model was better when using fewer classes. These
results highlighted an intriguing behavior, suggesting that the pre-
trained neural network was more general and less prone to over-fitting
on the prominent classes of the NL dataset. We can conclude that
transfer learning proves beneficial when limited labeled examples are
available, while in the full-dataset training mode, it enhances the
model’s performance for general classes at the expense of specific
classes in the dataset.

5.6. Limitations

The primary constraint of this study, particularly in developing
countries and numerous other nations, is the requirement for digitized
parcel boundary data. Another limitation is the necessity to obtain
information regarding the crops cultivated in the previous season. The
impact of noisy input data, such as past crop information derived from
a prediction system rather than ground-truth data, remains unknown
in terms of the system’s response. Exploring this aspect constitutes an
intriguing avenue for future research.

To encode the RS signal, we employed a backbone that involved
several stages: EO preprocessing steps, averaging the pixels of the
FOI, smoothing the time series signal, and ultimately applying a
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temporal context window with statistical functionals. Although it is
straightforward to evaluate the computational resources needed for
training the neural network (see Appendix D), quantifying the time
required for this sequence of preprocessing steps can be challenging,
as it is not easily achievable on the fly. Studies proved that other
methods were more efficient in terms of performances (Sainte Fare
Garnot et al., 2020). An inherent enhancement to encode the RS
signal in a more effective manner would involve employing an end-
to-end approach. This approach entails learning the aggregation of RS
data and integrating its representation into a neural network, similar
to architectures such as CNN-temporal or CNN-RNN (Pelletier et al.,
2019; Sainte Fare Garnot et al., 2019) or more advanced structures
like PSE-LTAE (Sainte Fare Garnot et al., 2020; Quinton and Landrieu,
2021; Weilandt et al., 2023). By adopting these powerful architectures,
the encoding of RS signals can be optimized, thereby potentially
improving the overall performance and accuracy of the system.
Furthermore, Rußwurm and Körner (2020) have demonstrated that
preprocessing steps in RS can enhance classifier accuracy, although the
improvement tends to be marginal when applied to advanced learning
models.

Finally, we would like to try a meta-learning method to tackle the
few-shot learning more effectively, by using specific algorithm like
MAML (Finn et al., 2017) and MetaNorm (Du et al., 2020). Also, a
domain adaptation method like the one proposed by Capliez et al.
(2023), but spatially and not temporally, or the one of Nyborg et al.
(2022b) would be very useful for the few-shot setting.

5.7. Recommendations

Regarding future research directions, there are several avenues for
further exploration. One potential direction is to integrate knowledge
from the EuroCrops ontology graph inside the learning model, for
example by creating multi-level embeddings of each crop. This could
improve the ability of the model to capture the complex spatiotemporal
variability of crops. It would be also possible to integrate knowledge at
the loss level, in a way similar to what Turkoglu et al. (2021) proposed.

A more complex way to fuse the modalities together could also be
explored, such as using a Gated Multimodal Unit (Arevalo et al., 2017).
This could lead to better integration of the different data modalities
and improved performance of the model.

It would also be valuable to investigate the results at a more
regional/local level, especially for FR with its large landmass, crop
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diversity, and meteorological conditions. Local hierarchical clustering
and the performance of the model at the regional level could be
examined to gain a deeper understanding of how the model performs
in different regions. We saw that the results for FR were lower,
possibly due to the diversity of crops and the distribution vector used.
Investigating the effect of a region-specialized model, for example
by fine-tuning using Adapter layers (Poth et al., 2020), could be
a potential solution. In addition, adding meteorological features and
investigating their impact could be worthwhile, especially in the case
of extreme events. Methods such as (Tseng et al., 2021b) or using
learned embeddings that represent the time of the thermals (Nyborg
et al., 2022a) could be explored.

Another area to investigate is the potential of a specific loss function
for the early season model, like the one proposed in Rußwurm et al.
(2023), as per our simple data-augmentation technique. This could
lead to better performance in the early season, which is an ongoing
challenge for crop classification.

Other potential avenues for future work include adding more
countries to the experiments, but also testing the system with different
backbones, allowing ingestion of the EO raw time series as they
are. Furthermore, assessing the effects of different combinations
of bands and sensors, encompassing various specifications such as
spatial, temporal, angular, and spectral aspects, would be necessary to
determine their influence on performance. This last step would prevent
reliance on man-made filters like Hampel or Whittaker and man-made
features like FAPAR and LAI, as they contain filtered information,
filtering some that may be useful for the final task (Trigeorgis et al.,
2016).

Overall, these future directions could further improve the accuracy
and generalization of the proposed multimodal approach for crop
classification.

6. Conclusions

In conclusion, we proposed a multimodal hierarchical approach
for crop classification that leverages crop rotation history, optical
remote sensing signals, and local crop distributions. We released a large
harmonized time series dataset of 7M Feature Of Interest (FOI) for a
total of around 35M FOI-season. We introduced a new dataset-agnostic
method relying on data and expert knowledge for aggregating crops,
allowing to evaluate a classifier on a specific region in a meaningful
way. Finally, we propose a data-augmentation method to boost the
results in early-season setting. Our approach achieved high accuracy
without in-situ data from the test season and showed promising results
for cross-domain generalization through transfer learning and few-shot
learning experiments. Pre-training on a dataset improves transferability
between countries, allowing for cross- domain and label prediction
and stabilization of the learning in a few-shot setting. Our approach
can contribute significantly to agriculture management and policy
monitoring.
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Appendix A

See Figs. A.1–A.3

Appendix B

In our main paper, all the experiments were ran using a temporal
split between the train, dev and test. In Table A.1 we show the results
of experiments using a spatio-temporal split. It means the parcels used
for testing are from different years than the year used for training,
but also they are different parcels. We used 90% of the parcels for
training, and 10% of the parcels for testing. Our results show a slight
deterioration of the performances, coinciding with the ones of Weilandt
et al. (2023) as we stated in the main paper.

Appendix C

In our main paper, all the experiments were ran using a set of
features comprising FAPAR, LAI, B4 and B8 A. As we stated in the main
paper, the focus of this work is not on the input features sets, as our
architecture is modular and the encoder we used can be changed for
another one, using different features. Our work on modeling focused
on showing the interest of an hierarchical architecture.

In Table A.2 we show the results of experiments using more
features obtained from more spectral bands, over data from NL. In
addition to the initial feature set, we added B2, B3, B8 given at 10 m
resolution, and also B11 and B12 that were interpolated at 10 m. With
9 time-series instead of 4, we obtained a feature vector of size 63
instead of 28. We also ran the same experiments using the 4 10 m
bands of S2: B2, B3, B4 and B8. Our results show an amelioration
of all the models that are using more features. We also observe
the same improvement between the different architectures proposed,
confirming that the hierarchy helps even with a broader feature set. It
is noteworthy that the performances of the InterYE𝑀𝑀 are dropping
a bit when using only the 10 m bands of S2. We explain this by the
fact that there is no sequential processing of the RS time series for this
model: the RS vectors of functionals from the different sliding windows
are concatenated into one. For this reason, higher-level features like
FAPAR and LAI are helping to reach higher results. This is not true
for all the other models containing a IntraYE, which process the time
series with an LSTM and can extract the useful features (Trigeorgis

et al., 2016).
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Fig. A.1. Sankey diagram of the crop harmonization, linking the French RPG (left) and the Dutch BRP (right), using HCATv2 from EuroCrops (center). The bars represent
a relative share of the surface for each country. For sake of presentation (in order to fit in one page), only the 40 main crop types for each country are represented.
Other crop types are grouped in ‘‘Other’’ classes. An interactive version of the diagram without class limitation is available on https://jeodpp.jrc.ec.europa.eu/ftp/jrc-

opendata/DRLL/CropDeepTrans/data/sankey_All_crops.html.
Table A.1
Results over the Netherlands and France of the best end-of-season classification architecture on 10% of the parcels of the dataset for the test season 2020. One
split is purely temporal (T) and the other one is temporal and spatial (T+S). The T split lines contain the results of our model on this specific 10% subpart of the
dataset. The T+S lines contain the results of a model with the same architecture trained only over the 90% remaining. None of the models have seen timeseries
from season 2020 during training. The metrics shown are macro Precision (P), Recall (R) and F1 score, as well as accuracy and micro-F1 score (m-F1).
Labels Split 141/151-class 24/32-class 10/14-class 8/12-class

Dataset P R F1 Acc P R F1 Acc P R F1 Acc P R F1 m-F1

NL T 47.2 41.9 42.7 93.7 77.2 75.9 76.0 94.1 87.0 82.1 83.8 95.6 85.7 78.9 81.4 91.7
T+S 47.3 42.5 42.7 93.3 75.8 74.8 74.6 93.7 86.6 81.2 82.9 95.3 85.3 77.8 80.4 91.0

FR T 44.4 38.7 39.4 85.4 72.0 68.6 69.1 85.6 79.5 75.9 77.4 89.1 77.8 73.2 75.1 83.5

T+S 44.8 38.4 38.4 85.1 71.6 68.0 68.8 85.4 79.1 74.4 76.3 88.8 77.3 71.5 73.9 82.7
Table A.2
Results over the Netherlands of several end-of-season classification architectures, using different features sets. The first one is composed of B4, B8A, FAPAR and
LAI, the second one is an extension composed of first one with B2, B3, B8, B11 and B12, the third one only contains the 10 m bands of S2. The metrics shown
are macro Precision (P), Recall (R) and F1 score, as well as accuracy and micro-F1 score (m-F1).
Labels Features 141-class 24-class 10-class 8-class

Model P R F1 Acc P R F1 Acc P R F1 Acc P R F1 m-F1

IntraYE𝑅𝑆

4

27.4 20.9 20.4 89.8 64.0 60.9 60.4 90.3 78.8 75.9 74.5 92.9 76.1 72.6 70.8 87.8
IntraYE𝑀𝑀 55.6 39.7 43.2 92.8 76.6 69.8 72.1 93.1 83.0 80.5 80.9 94.7 80.2 77.9 78.0 90.0
InterYE𝑀𝑀 41.1 33.0 33.6 92.2 70.8 70.5 69.9 92.6 82.2 79.7 80.4 94.5 80.2 76.3 77.5 89.5
HierE𝑀𝑀 47.3 38.7 39.7 93.3 74.7 75.5 74.7 93.7 85.2 81.9 83.1 95.2 83.6 78.8 80.6 91.1
HierE𝑓𝑖𝑛𝑎𝑙 47.1 39.3 40.2 93.6 76.6 75.8 75.7 94.0 86.7 81.9 83.6 95.5 85.3 78.7 81.1 91.6

IntraYE𝑅𝑆

9

36.0 27.4 27.4 92.5 73.3 68.9 69.6 92.9 86.5 82.3 82.2 95.2 84.7 79.9 79.6 91.7
IntraYE𝑀𝑀 61.0 45.6 49.0 94.3 81.0 75.9 77.7 94.6 88.0 85.9 86.3 96.1 85.9 84.2 84.2 92.7
InterYE𝑀𝑀 47.1 35.8 37.9 94.0 77.2 74.6 75.5 94.4 88.6 84.5 86.0 96.1 87.3 82.2 84.0 92.8
HierE𝑀𝑀 48.6 40.1 41.0 95.0 80.5 80.3 80.1 95.4 90.8 87.7 88.9 96.8 89.7 85.8 87.3 94.2
HierE𝑓𝑖𝑛𝑎𝑙 52.5 46.3 46.7 95.3 81.5 81.2 81.1 95.6 90.6 87.9 89.0 96.9 8.96 85.7 87.3 94.2

IntraYE𝑅𝑆

S2-10m

26.7 17.4 18.4 88.6 64.1 53.3 54.2 88.9 81.5 72.1 73.2 91.9 80.0 68.6 69.8 86.3
IntraYE𝑀𝑀 55.2 41.8 44.6 92.8 76.2 70.5 72.5 93.2 85.2 81.9 82.8 94.9 83.0 79.5 80.4 90.4
InterYE𝑀𝑀 40.5 30.6 31.8 90.8 65.9 63.6 63.8 91.0 80.6 78.7 79.1 93.2 78.1 75.4 76.0 86.2
HierE𝑀𝑀 48.5 39.3 40.5 93.5 75.8 75.0 75.0 93.8 88.0 83.7 85.4 95.5 86.9 81.0 83.4 91.8
HierE𝑓𝑖𝑛𝑎𝑙 49.6 41.1 42.1 93.5 76.0 75.8 75.4 93.9 88.8 83.7 85.8 95.5 88.3 80.7 84.0 91.9
18

https://jeodpp.jrc.ec.europa.eu/ftp/jrc-opendata/DRLL/CropDeepTrans/data/sankey_All_crops.html
https://jeodpp.jrc.ec.europa.eu/ftp/jrc-opendata/DRLL/CropDeepTrans/data/sankey_All_crops.html
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Fig. A.2. Mean of the EO-derived variable for each country 2019–2020. When crop have winter and spring varieties, the spring varieties are represented as dashed lines.
Table A.3
Computation for each of the models: time in seconds and GPU RAM memory (Mem.) in Gigabytes.
Models CR RS CD Modelisation-level Hierar. Training time (s) Mem.

Within season Between seasons Batch/s NL FR

IntraYE𝑅𝑆 ✗ ✓ ✗ ✓ ✗ ✗ 49 3575 12 300 1.03
IntraYE𝑀𝑀 ✓ ✓ ✗ ✓ ✗ ✗ 47 3725 12 810 1.03

InterYE𝐶𝑟𝑜𝑝 ✓ ✗ ✗ ✗ ✓ ✗ 116 500 1720 1.00
InterYE𝑅𝑆 ✗ ✓ ✗ ✗ ✓ ✗ 162 350 1200 1.00
InterYE𝑀𝑀 ✓ ✓ ✗ ✗ ✓ ✗ 93 625 2150 1.00

HierE𝑅𝑆 ✗ ✓ ✗ ✓ ✓ ✓ 11 5300 18 230 1.59
HierE𝑀𝑀 ✓ ✓ ✗ ✓ ✓ ✓ 11 5300 18 230 1.59
HierE𝑓𝑖𝑛𝑎𝑙 ✓ ✓ ✓ ✓ ✓ ✓ 11 5300 18 230 1.60
Appendix D

The computational power in terms of training time per batch and
per dataset, and GPU memory used during the training of the different
models is shown in Table A.3. We used a batch size of 256. We did
19
not use any stopping strategy, as we chose the model giving the best
performance on the validation set. We used a maximum number of 25
epochs for NL and 10 epochs for FR. We used float16 as precision
for the weights and neurons of the neural network.
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Fig. A.3. Standard deviation of the EO-derived variable for each country for the growing season 2019–2020. When crop have winter and spring varieties, the spring varieties are
represented as dashed lines.
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