Are Text Classifiers Xenophobic? UNWERMD OE CHILE
A Country-Oriented Bias Detection Method
With Least Confounding Variables

Valentin Barriere, Sebastian Cifuentes
Universidad de Chile — DCC — CENIA

LREC-COLING 24, Torino



Introduction



e Fairness in |A

[ =



e Fairness in IA

e Generally coarse, based on GDP




e Fairness in IA
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e The world has high diversity of
languages, cultures, due to inter-
nal/external migrations
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e A cognitive bias: availability bias,
confirmation bias, Dunning-Kruger
effect, ...

FRAMING BANDWAGON ~ DUNNING-KRUGER
EFFECT EFFECT EFFECT

e A social bias like a cultural bias,
people have different norms

In a decision-making process, a bias can be seen as a change of
decision actioned by a non-causal variable.



Confounding variables problem

General Issue

All the bias measurement process is biased itself by different variables
such as the bias detection dataset or the fine-tuning dataset. Let's
propose a method applied to classifiers using real-world target data.
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e Fine-tuning a model inducts
biases because of the task
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e Bias assessment methods relies

bias-detection datasets, not
target data distribution




Method’s General idea

Our solution to these problems:

e We propose a method to use the target data, by perturbating any
real-life examples

e Our method at the difference of outputs between the perturbated
examples, without the need for label

e We use names as a proxy to estimate the bias
e We look at country-related bias and hence be more geographically

fine-grained

We found out biases in multilingual models in English and non-English
toward several countries, depending on the target language



Related works |

Intrinsic methods
More general but their correlation to downstream tasks is questionable

e Relation between intrinsic metrics and actual deviant behavior is
opaque [9, 6]

e Methods based on embeddings lack of transparency and
interpretability [19]

Extrinsic methods

More interpretable but

e depends on the choice of variables [1]

e dataset used for evaluation [16]

Even intrinsic methods relying on templates [7, 12, 10]



Related works I

Data
e Considerable variations in bias values and conclusions across
template modifications [18]
e Different works propose a multilingual dataset [8, 5]

e A few resources for non-English languages, especially out of a
non-Western context [20]

Nationality bias

e [21] shows influence of demographic attributes on country biases
e Names have been shown to contains nationality biases [13]

e [7] dividing the nationalities in 6 groups based on their GDP

[17] proposes Checklist, using a perturbation method in order to
assess the robustness of a model



Our method: Perturbation of target-distribution examples
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Figure 1: Overview of the counterfactual example creations



Our method: Perturbation of t distribution examples

‘Alexander = Javier &2 Gazetteers of Hamza
Eskandar common names Jodo EA
Alessandro 1 William & Alexandre £ Aleksandar ==
Alejandro B2 Alexandre 01 Sandor = Aleksander

: I spent the day with Alexander and this went not as expected!

Matthieu L1

Sr_: 1 spent the day with Alexandre and this went not as expected!
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Our method: Perturbation of target-distribution examples

K Probabilities Discrepancies \

p(negative| S p(hate|SL ) = 0.74
p(hate|S, 1a) = 0.57
P ha’ce|S1 ) = 0.67
p hate|SI1_) =0.59

(

(

(
0.52 | p(
0.55 | p(hate|Sgy) = 0.56
9

(

(

).30
(negatlve[ 0.50

p(negatlveIS"

p(negatlve[S"
p(nega’clveIS" p(hate|SL) = 0.64
0271 p hatelSl1 = 0.66

0.60 | p hate|SZ) = 0.78

J

Figure 1: Overview of the counterfactual example creations

p(negatlvel

)
)
)
p(negatlve|S" )
)
)=
)=
)=

p(negatlveIS"

Problem: Sentences with names from certain countries will more likely
to be classified as negative when it's not, and less likely to be classified
as hate speech when it is! 7



How do we detect a bias?

In a decision-making process, a bias can be seen as a change of decision

actioned by a non-causal variable:

e ook at the change in distribution when perturbating the input data
with a non-causal change

e A bias is non necessary negative: a change of a Language Model's
distribution might reflects the world?

e For some models, when the labels have an explicit valence, it is
possible to quantify the positiveness of the bias

1.0
0.5

0.0
In their paper " A Natural Bias for Language Generation Models" [14], the authors
introduce a way to initialize the bias of a LM in order to fasten the learning phase




We used several metrics

A general one
e Distribution distance (Jensen—Shannon divergence, Wasserstein

distance, Sinkhorn distance).

e Can be used to say that a bias exists.

A label-oriented one
e Percentage of augmentation/diminution of the predicted examples in
each of the classes.
e Can be used to interpret the type of bias regarding the class and
target groups.

A valence-oriented one
e A= Zpos Ppos — Zneg Preg -
e Can be used to detect if a bias is harmful or not toward a target

group.



Experiments




Experimental Protocol

Models
e Widely used off-the-shelf Twitter multilingual sentiment classifiers

based on XLM-T [2],2 which had > 1M monthly download

e Multilingual stance classifier from [4]

Datasets
e Datasets from the TweetEval [3] benchmark (AR, EN, ES, DE,
FR, IT, PT) and downloaded Tweets frm [15] (PL, HU) and [11]
(TK).
e Zero-shot stance recognition dataset CoFE from [4]

e Gazeeters of most common names and surnames for each country
(from Wikidata, like [17]): ~ 15k names from from 194 countries.

Others
We used the KL divergence, we created 50 random perturbations per

sentence, and for stance recognition we used the classes /n Favor and
10

Against as positive and negative.



English Language using Stance Classifier

Gender Male Female

Metric A Other Against In Favor KL A Other Against In Favor KL
United Kingdom | -0.55 0.0 13.0 -3.0 4.01 | -0.46 0.0 8.0 -4.0 3.83
Ireland -0.62 0.0 12.0 -4.0 423 |-057 0.0 10.0 -5.0 4.18
United States -0.61 0.0 12.0 -4.0 3.99 | -0.46 0.0 8.0 -5.0 3.77
Australia -0.58 0.0 13.0 -3.0 4.16 | -0.49 0.0 9.0 -4.0 3091
New Zealand -0.55 0.0 12.0 -4.0 4.12 | -043 0.0 9.0 -40 3.84
Canada -0.68 0.0 11.0 -4.0 4.14 | -0.64 0.0 7.0 -5.0 3.92
South Africa -0.66 0.0 10.0 -4.0 4.07 | -0.59 1.0 7.0 -6.0 3.80
India -0.81 0.0 6.0 -5.0 472 |-117 1.0 8.0 -9.0 473
Germany -0.98 0.0 10.0 -6.0 4.26 | -0.77 1.0 8.0 -6.0 3.94
France -1.03 1.0 8.0 -7.0 429 | -091 2.0 3.0 -9.0 413
Spain -1.70 2.0 7.0 -11.0 4.80 | -1.52 2.0 6.0 -11.0 452
Italy -1.82 2.0 8.0 -12.0 474 | -1.47 2.0 5.0 -12.0 431
Portugal -1.66 2.0 8.0 -11.0 5.08 | -1.43 2.0 6.0 -11.0 4.45
Morocco -1.44 2.0 6.0 -11.0 548 | -1.41 3.0 2.0 -13.0 5.42
Hungary -1.43 2.0 8.0 -11.0 4.64 | -1.46 2.0 7.0 -11.0 4.68
Poland -1.52 1.0 11.0 -10.0 4.69 | -1.41 2.0 7.0 -11.0 4.49
Turkey -1.58 2.0 5.0 -12.0 513 | -1.34 2.0 5.0 -12.0 4.78

Table 1: Metrics on the stance recognition model. A represents the difference
of probability of the positive class and the negative class. The other values by
class and by gender are the percentage of change in the classification output. 1
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Multilingual Texts

Model tends to prefer the names coming from the sentence’s language.
Impulsing for the name Al Xenophobia, the fear of the stranger.
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Figure 2: Matrix of A normalized per language from multilingual sentiment 12



Conclusion

e New technique to detect country-related bias minimizing
confounding variables

e Detection of the bias in broadly used off-the-shelf affect-related
classifiers

e Xenophobia: Bias change w.r.t. the language of the sentence

Thanks for listening!
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