Are Text Classifiers Xenophobic? A Country-Oriented Bias Detection Method With Least Confounding Variables

Valentin Barriere, Sebastian Cifuentes

Universidad de Chile - CENIA

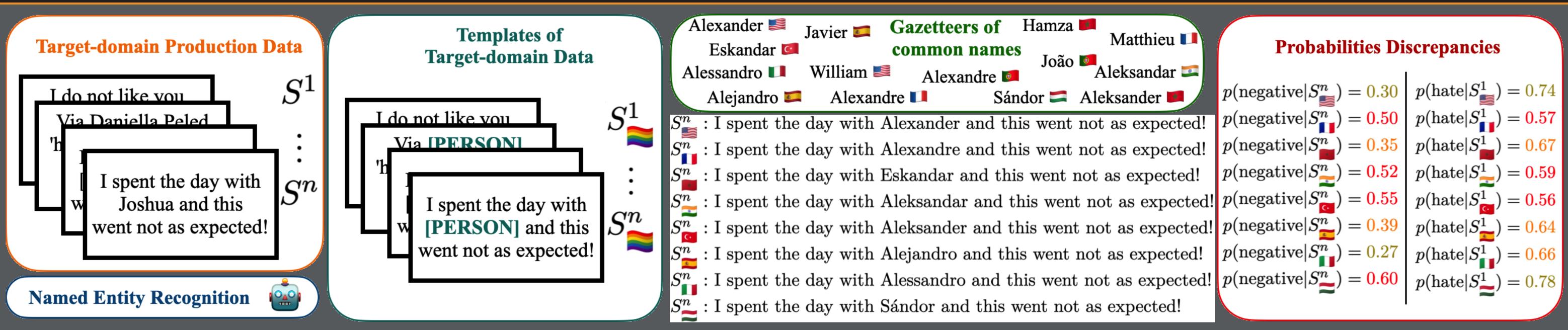


Figure 1: Overview of the counterfactual example creations. We show examples with sentiment and hate speech for variation of the name "Alexander" and two sentences.

General issues

In a nutshell

Coarse-grain: Classical bias detection methods regarding geography are usually restrained to coarse-grained scales

Confounding variables problem: All the bias measurement process is biased itself by different variables such as the bias detection dataset or the fine-tuning dataset. Our method applies to classifiers using real-world target data.

- Fine-tuning a model inducts biases because of the task training data
- Bias detection on pre-trained LM, not on the final classifier
- Bias assessment methods relies bias-detection datasets, not target data distribution

How do we detect a bias?

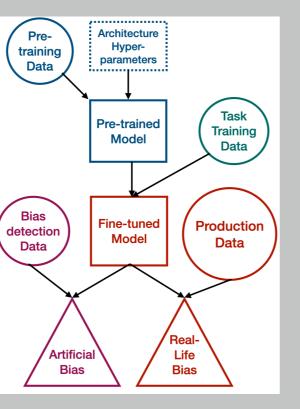
We look at the change in distribution when perturbating the input data with a non-causal change

- ► A general one: Can be used to say that a bias exists
 - Distribution distance (Jensen–Shannon divergence, Wasserstein distance, Sinkhorn distance).
- ► A label-oriented one: expert knowledge helps understand

- Bias assessment using the production model on the target data, by perturbating any real-life examples
- Our method at the difference of outputs between the perturbated examples, without the need for label
- ► We use names as a proxy to estimate the bias
- ► We look at country-related bias to be more geographically fine-grained
- We found out biases in multilingual models in English and non-English toward several countries, depending on the target language.

Experimental Protocol

- ► One experiment using Stance Recognition CoFE dataset and model [2]
- One experiment using widely used Twitter multilingual sentiment classifier based on XLM-T [3] and Tweets data from TweetEval + Others [4, 5, 6] (10 languages; AR, EN, ES, DE, FR, IT, PT, PL, HU, TK)
- ► Gazeeters of most common names and surnames from each country (from Wikidata, like [1]): \approx 15k names from from 194 countries.
- We created 50 random perturbations per sentence using most common names. For stance recognition we used the classes *In Favor* and *Against* as positive and negative.



- Percentage of augmentation/diminution of the predicted examples in each of the classes.
- Can be used to interpret the type of bias regarding the class and target groups.
- A valence-oriented one: when the labels have an explicit valence, it is possible to quantify the bias' harmfulness toward a target group
 Δ = ∑_{pos} p_{pos} ∑_{neg} p_{neg}.

Related works

- Intrinsic methods: General but correlation to downstream tasks is questionable: opaque relation between intrinsic non-interpretable metrics and model behavior
- Extrinsic methods: Interpretable but depends on choice of variables/dataset
- Data: A few resources for non-English languages out of a non-Western context, and considerable variations in bias values and conclusions across template modifications
- Nationality bias: studies showed influence of demographic attributes at the country-level, or name-nationality using templates and generative models
 Checklist [1] uses a perturbation method in order to assess the

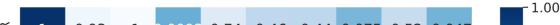
English Stance Recognition

Gender			Male					Female	
Metric	Δ	Other	Against I	n Favor	KL	Δ	Other	Against In	Favor KL
United Kingdom	-0.55	0.0	13.0	-3.0	4.01	-0.46	0.0	8.0	-4.0 3.83
United States	-0.61	0.0	12.0	-4.0	3.99	-0.46	0.0	8.0	-5.0 3.77
New Zealand	-0.55	0.0	12.0	-4.0	4.12	-0.43	0.0	9.0	-4.0 3.84
Canada	-0.68	0.0	11.0	-4.0	4.14	-0.64	0.0	7.0	-5.0 3.92
South Africa	-0.66	0.0	10.0	-4.0	4.07	-0.59	1.0	7.0	-6.0 3.80
India	-0.81	0.0	6.0	-5.0	4.72	-1.17	1.0	8.0	-9.0 4.73
Germany	-0.98	0.0	10.0	-6.0	4.26	-0.77	1.0	8.0	-6.0 3.94
France	-1.03	1.0	8.0	-7.0	4.29	-0.91	2.0	3.0	-9.0 4.13
Spain	-1.70	2.0	7.0	-11.0	4.80	-1.52	2.0	6.0	-11.0 4.52
Italy	-1.82	2.0	8.0	-12.0	4.74	-1.47	2.0	5.0	-12.0 4.31
Morocco	-1.44	2.0	6.0	-11.0	5.48	-1.41	3.0	2.0	-13.0 5.42
Turkey	-1.58	2.0	5.0	-12.0	5.13	-1.34	2.0	5.0	-12.0 4.78

Table 1: Δ : difference of probability of the positive class and the negative class. The other values by class and gender are percentages of change in the classification output.

English-speaking country names exhibit highest Δ (i.e., more positive outcome). Female names more positive, except for India.

Multilingual Sentiment Classification



robustness of a model

References

- Marco Tulio Ribeiro, Tongshuang Wu, Carlos Guestrin, and Sameer Singh. Beyond Accuracy: Behavioral Testing of NLP Models. ACL, 2020.
- [2] Valentin Barriere and Alexandra Balahur. Multilingual Multi-target Stance Recognition in Online Public Consultations. accepted to MDPI Mathematics, 2023.
- [3] Francesco Barbieri, Luis Espinosa Anke, and Jose Camacho-Collados.
 XLM-T: A Multilingual Language Model Toolkit for Twitter.
 In Workshop on Computational Approaches to Subjectivity, Sentiment & Social Media Analysis @ ACL, 2022.
- [4] Francesco Barbieri, Jose Camacho-Collados, Leonardo Neves, and Luis Espinosa-Anke. TWEETEVAL: Unified benchmark and comparative evaluation for tweet classification. In Findings of the Association for Computational Linguistics Findings of ACL: EMNLP 2020, pages 1644–1650, 2020.
- [5] Igor Mozetič, Miha Grčar, and Jasmina Smailović.
 Multilingual twitter sentiment classification: The role of human annotators. *PLoS ONE*, 11(5):1–26, 2016.
- [6] Abdullatif Koksal and Arzucan Ozgur.
 Twitter Dataset and Evaluation of Transformers for Turkish Sentiment Analysis.
 In 29th Signal Processing and Communications Applications Conference (SIU), 2021

- Matrix of **Δ** normalized per language from multilingual sentiment
- Model prefers names from the sentence's language
- Strong implications with the global use of English, or for people with foreign names due to immigration

AR	1	-0.93	-1	0.0093	-0.74	-0.46	-0.44	-0.075	-0.52	-0.047		
EN	-0.4	1	-0.14	0.073	-0.23	-0.45	-1	-0.83	-0.085	-0.68		-0.75
DE	0.35	1	0.91	0.65	0.51	0.6	-1	0.53	0.23	0.04		-0.50
FR	-0.45	0.27	-0.08	1	0.059	0.69	0.02	-1	-0.99	-0.55		-0.25
ES	-1	0.33	0.65	0.76	0.24	1	0.51	0.082	0.63	-0.39		
F	-0.94	0.049	-0.55	0.87	0.24	1	-0.15	0.65	-1	-0.5		-0.00
РТ	0.68	-0.57	-0.54	0.11	0.43	0.5	0.96	0.64	1	-1		0.25
Ĥ	0.17	0.5	0.21	0.7	-0.84	0.03	-1	1	0.069	-0.29		0.50
ЪΓ	-1	0.45	0.14	0.55	-0.14	-0.29	-0.57	-0.43	1	-0.42		0.75
ΤK	0.18	-0.52	-0.87	-0.048	-0.83	-0.9	-0.96	0.048	-1	1		1.00
	Morocco	, tingo	Germany	France	Spain	Hally	Portugal	HUNDAN	Poland	rutter		1.00
		reo	-									

Contact Information:

https://github.com/valbarriere/Bias_COLING24/

vbarriere@dcc.uchile.cl