Targeted Image Data Augmentation Increases Basic Skills Captioning Robustness

Valentin Barriere^{2,3*}, Felipe del Rio^{1,3*}, Andres Carvallo de Ferari^{3*}, Carlos Aspillaga^{1,3}, Eugenio Herrera-Berg³, Cristian B. Calderon³

¹ Universidad Católica de Chile ² Universidad Católica de Chile ² Universidad Católica de Chile ³ Universidad Católica de Chile ⁴ Universidad Católica de Chile ⁴ Universidad Católica de Chile ⁵ Un

² Universidad de Chile ³ CENIA

Motivation

- Humans develop all kinds of cognitive abilities
 that allows us to interact with the world in
 countless different contexts.
- ANNs often struggle in generalizing to out-of-context examples.
- Datasets only incorporate partial information regarding the potential correlational structure of the world.

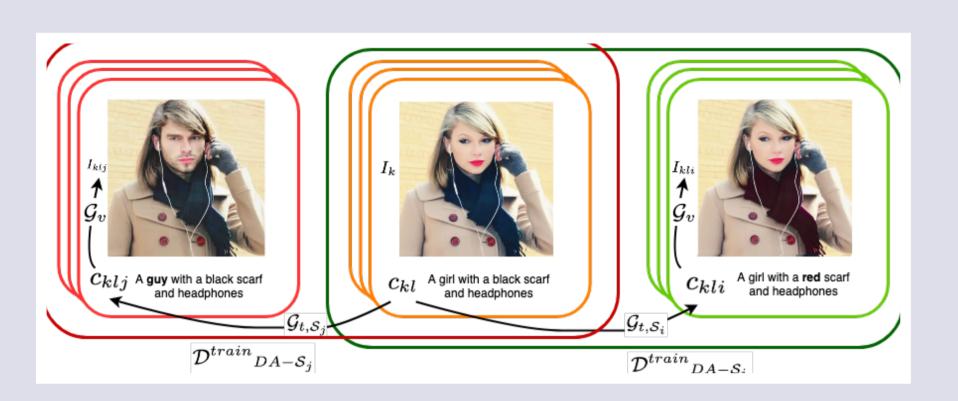


Fig. 1. Images generated using TIDA using different skills.

Targeted Image-editing Data Augmentation

TIDA, a two-step method for generating new data examples for a particular skill:

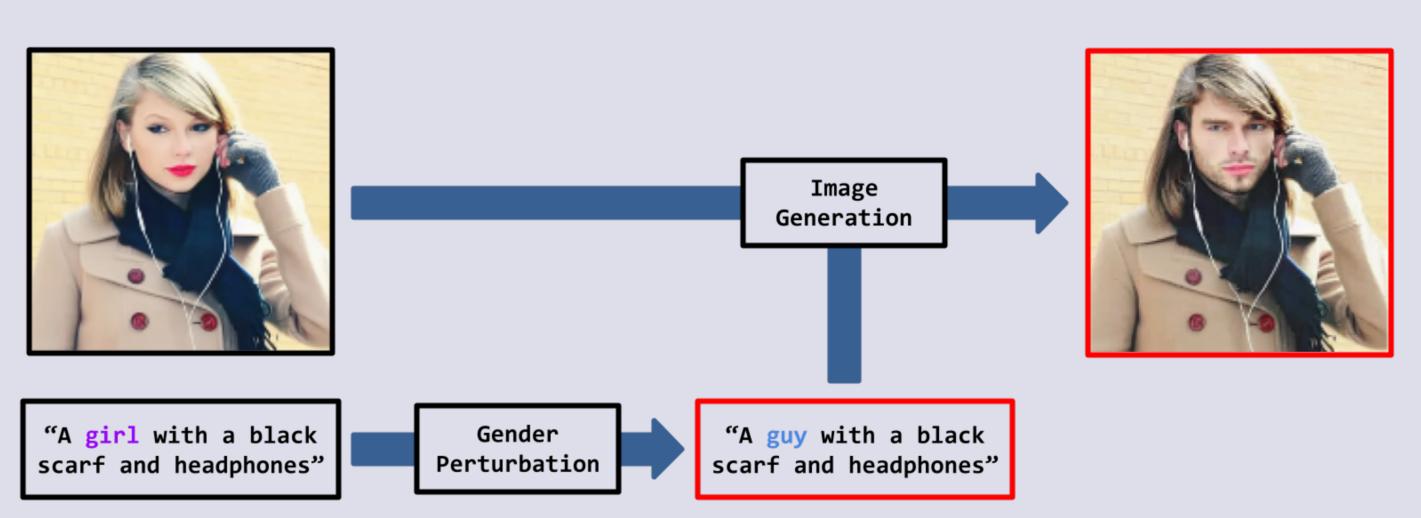


Fig. 2. Targeted Data Augmentation process.

1. Skill-related Retrieval

Create a binary classifier to detect the presence of a skill in a caption.

Select samples from both the train and test datasets to create a **subset for each skill**.

2. Targeted Data Augmentation

For each image in a skill subset, we create **new** captions for it, using text generators functions that perturb its original caption.

With these **new captions** we use **text-to-image generator** to create a new image.

Methodology

- Image Captioning task using the Flickr30k dataset.
- Three basic human skills:
 - Color recognition.
 - Counting capability.
 - Gender detection.
- Baseline: Model trained with dataset augmented by generating images from random captions of the dataset

Overall Results

Performance of the BLIP model trained using the data generated by TIDA as measured by different image captioning metrics.

	#DA	BLEU@1-4				RefCLIPScore			
Test Train		$\mathcal{D}^{test}{}_{clr}$	$igg _{\mathcal{D}^{test}_{ctg}}$	$igg _{\mathcal{D}^{test}_{gdr}}$	\mathcal{D}^{test}	$\mathcal{D}^{test}{}_{clr}$	$\mathcal{D}^{test}{}_{ctg}$	$igg _{\mathcal{D}^{test}_{gdr}}$	\mathcal{D}^{test}
\mathcal{D}^{tr}	0	51.8	44.0	49.9	49.7	79.9	79.3	79.8	80.3
$\overline{ {{\cal D}^{tr}}_{RAND} }$	60k	51.3	44.1	49.2	49.6	80.0	79.5	79.7	80.2
$\overline{ {\mathcal D}^{tr}{}_{COLOR} }$	20k	51.7	44.0	49.3	49.5	79.8	79.4	79.6	80.1
$\mathcal{D}^{tr}{}_{COUNT}$	20k	51.7	44.4	49.2	49.7	79.9	79.5	79.7	80.2
$\mathcal{D}^{tr}_{GENDER}$	20k	51.2	43.4	48.5	48.8	80.0	79.2	79.9	80.3
$\mathcal{D}^{tr}{}_{ALL}$	60k	51.8	44.9	50.1	50.5	80.1	79.7	80.1	80.5

Table 1. TIDA Performance with different metrics.

- Overall best scores on each test set are obtained with the model that uses the combination of the three types of data-augmentation techniques.
- Counterintuitively, skill-related TIDA are not achieving the best scores in their respective test sets.

Implementation Details

- Stable Diffusion [1] to generate images.
- BLIP [2] model for Image Captioning.

Use of Skill-Related Words

- Investigate specific semantic words and evaluate the propensity of the model to use those words in the right context.
- Measure the inclusion of skill-related words in the captions, as compared to the ground-truth.

Findings

- The model use skill-associated words more often when the caption should contain one and less when it should not.
- Sometimes, as for gender, precision is decreased.

Skill	Color	Counting	Gender
Train	F1	F1	F1
\mathcal{D}^{tr}	66.7	69.4	74.1
$\overline{ {\cal D}^{tr}}_{RAND}$	67.0	75.5	73.4
$\overline{ {\cal D}^{tr}{}_{COLOR} }$	68.4	69.2	72.4
$\mathcal{D}^{tr}{}_{COUNT}$	68.1	71.0	73.2
$\mathcal{D}^{tr}_{GENDER}$	66.1	72.3	72.4
$\overline{\mathcal{D}^{tr}}_{ALL}$	68.6	73.4	74.1

Table 2. Skill-related inclusion.

Conclusions

- TIDA allows for gains regarding classical metrics.
- TIDA helps the image captioning model to use those words more efficiently

References

[1] Rombach, R. et al. High-resolution image synthesis with latent diffusion models. CVPR, 2022.

[2] Li, J. et al. BLIP: Bootstrapping Language-Image Pretraining for Unified Vision-Language Understanding and Generation. ICML, 2022.

Acknowledgements

Research partly funded by National Center for Artificial Intelligence CENIA, FB210017, BASAL, ANID

Check our paper!